
=nil; Database Management System
Mikhail Komarov

=nil; Foundation
nemo@nil.foundation

March 3, 2021

Abstract

For decades databases and database management systems (DBMS) were the basis for building
various applications. DBMS selection in most cases defined the storage data internal structure.
With widespread usage of authenticated data structures-based cluster commit log databases
has come, lots of new cluster replication and consistency protocols were introduced. Clusered
databases replication protocols became the application-level logic, stored data structure itself
became even more important, than the way it is getting processed. Existing database management
systems became insufficient to handle all the database replication protocols (which turned out to
be unique for each of database in the DBMS) storage mechanisms and consistency conditions
execution complexity. This paper intends to introduce =nil; Database Management System, able
to handle all the modern requirements through moving cluster replication protocol specialization
along with cluster transactions consistency conditions definition to database configuration level,
specified for each database individually and stored inside the database itself or distributed as a
separate module.

1. Introduction

From the very beginning various database management systems architecture was focused on
effectively storing data in the particular format with a strictly defined set of storage consistency

conditions, distributing data with a particular, pre-defined replication protocol within particular
pre-defined cluster architectures. Introducton of an authenticated cluster protocol commit log
concept extended available cluster architecture set with a family of "master-master"-alike replication
cluster protocols making possible to store and redistribute data being sure it gets replicated
exactly the same way on every cluster node. Such an introduction made advancement to easily
achievable clustered databases-based application properties, decreasing the trust required to be
given to the data stored because of no way of single cluster node isolated modification of the
such a "master-master" replicated storage without achieving cluster consistency possibility was found.

The absence of database management systems able to handle such clusters architecture made
databases and applications developers to introduce very own implementations of a data-management
piece of software with a hardcoded particular data structure support along with a hardcoded
application-specific "master-master" cluster consensus protocol.

Such an approach is an extremely inefficient way of launching an application with specific cluster
commit log requirements: financial assets management systems, industrial hardware control and
logging, sensible data storages etc. This also creates a problem of handling such datasets with some
kind of unified API.

1

mailto:nemo@nil.foundation

=nil; Database Management System

1.1. Cluster Consistency Mechanisms

According to unique consequences, when the data itself along with its’ structure is much more
important than the software used for handling, and adjusting data replication protocol to the data
management software is harder than in fully-controlled "master-slave" clusters (inspite of previous
DBMS industry experience when the data-handling software was at least as much important as
the data itself), the generalization of data-handling techniques used to build the generic DBMS
is required to be done to correctly embed newly introduced cluster architectures into the generic
DBMS architecure. Some of these generalizations would lead to moving hardcoded mechanisms to
the database configuration level.

Mechanisms selection is reasoned by the necessity of generalization of typical DBMS mechanisms
to handle cluster replication protocols of very different designs. This mechanism list includes:
cluster commit log handler, cluster replication protocol flow and serialization/marshalling format
definitions and handlers, local data storage consistency mechanisms.

1.2. Replication Protocol Features Distribution

According to the assumption every particular database is supposed to have it’s unique cluster
architecture handling mechanisms, the way to enable and disable particular features right at runtime
should be present to avoid the impossible - including all of the cluster architecture mechanisms
known. This is supposed to be done with two ways: virtualization and plugins mechanism.

The virtualization of cluster architecture handling mechanisms requires for the virtualization
environment to be able to handle generic Turing-complete programming language to ensure every
cluster replication protocol can be implemented. This would allow to literally embed the code to
the particular database configuration and redistribute it with the database data. Unfortunately the
performance of such a solution would be less than with natively-executed code.

This is why it is also required to have plugins mechanism - to ensure performance-demanding
databases will get as much as they can from the hardware. But such a solution raises secutiry
concerns - every particular plugin implmenenting some replication protocol adapter (the set
of cluster replication handling mechanisms) should be manually audited inspite of virtualized
implementations.

1.3. Cluster Consistency Conditions

Several database cluster architectures suppose cluster consistency conditions to be represented by
imperative language, distributed with the clsuter data itself, (which may be not even Turing-complete
one) and executed in virtualized environment (sometimes unique for each protocol) to ensure
newly coming data do not violate cluster’s master nodes data integrity. Such a mechanism is
considered as a part of cluster architecture handling techniques, but being a hevay-loaded part, some
replication protocols would require advanced architecture and implementation techniques to make it
perform well enough (e.g. sharding the load to other "slave"-alike cluster nodes). This means a ne-
cessity for virtualization in case of several protocols, can be replaced with sub-clusterization necessity.

2

=nil; Database Management System

Coming to consistency conditions virtualization. In case some particular replication protocol
has its’ own unique virtualization environment with its’ own bytecode format, it is required to
have a way to handle it. This is where pluggable virtualization engines come out handy. Using
protocol-specific VM as a DBMS plugin allows to handle even an extremely specific bytecode with
no performance troubles.

1.4. Storage Engines

Various clustered databases data structures suppose for the DBMS to handle them differently.
Column-oriented data, geospatial data, raw key-value storages - all of them require to be hadled with
storage engines implemented in very different ways (some of them should be based on LSM-trees,
some of them should be base on B-family trees, some should be done in a completely different way).
This fact, by the way, does not mean it is also required to distribute storage engines as a database
configuration. Data storage engines are considered as highly resource-demanding components, which
are crucial to operate at their maximum performance. That means the only option possible is
natively-executed pluggable data storage engines.

1.5. Query Language

Data structures differencies (data relations differencies, whatever they are being called: collections,
blobs etc) suppose for such a DBMS to have some query language to handle the set of relations
of various complexity. According to the DBMS needs to be able to handle non-relational data
structures, this query language has to be an imperative one, so there would be no limitation in query
definitions. The most trivial way is to move forward with one more SQL dialect, but this disables
unified query language for in-consistency conditions data queries along with all the other replication
protocol adapter components data queries, in fact introducing two query languages: a language for
replication protocol adapter queries and a language for user data queries. This means, data query
language has to be more of library-level DSL implemented in some widespread generic-purpose
imperative Turing-complete language (e.g. C++) or compilable to particular’s protocol VM bytecode.

Such a query language approach brings questions about query planning and optimizations, which
are usually being performed by architecturally separate module with deep understanding of current
DBMS load situation. Imperative bytecode-based virtualized queries make nearly impossible to
parse and understand particular data queries (DBMS should not try to decompile bytecode-based
queries to get an information about data currently requested), that means any query planners and
optimizations (getting required data from storage engines) should be embedded right into the query,
as a bytecode. This also introduces the possibility for user to completely disable query planners
with wiping out related code.

1.6. Paper Contribution

The description above forms a list of requirements for the architecture of DBMS able to handle
clustered databases with replication protocol specific for each database. =nil; DBMS being
introduced by this paper claims to be the first database satisfying this list of requirements and
handling different databases with different "master-master" (but not only) cluster replication
protocols within the same dataabse management system.

3

=nil; Database Management System

2. Preliminaries

This section introduces preliminaries, terms and definitions required to describe =nil; DBMS
architecture well enough.

2.1. Architecture Elements

At first it is required to describe the generic DBMS architecture components.

2.1.1 Storage Engine

Database management systems are designed to store and manage the data. Such an architecture role
usually gets performed by a separate component - storage engine. It usually wraps some internal
data structure which handles the actual data. Such an internal data structure is usually a tree-alike
data structure, so it is required to remind the formal trees definitions of all the kinds which are
going to be discussed within this paper.

2.1.2 Trees Notation

Trees being considered in this paper are mostly ordered rooted trees because of B-Tree-family data
structures being most commonly used within the storage engines.

An ordered tree is a tree in which the left-to-right order among siblings is given. An unordered
tree is a tree with no order among siblings. In order to formulate these trees, a subclass of partially
ordered set theory (or lattice theory) and its algebraic system is being employed rather than graph
theory since approximate pattern matching between two trees is considered as an order-preserving
mapping between two ordered sets.

Tree is being defined as a subclass of a partially ordered set.

Definition 2.1 (Partially Ordered Set). A partially ordered set (or a poset for short) is a set V
with a binary relation ≤ (called a partial order), denoted by (V,≤), that satisfies the following:

1. ∀x ∈ V (x ≤ x) (reflectivity),

2. ∀x, y ∈ V (x ≤ y ∧ y ≤ x⇒ x ≤ y) (antisymmetry),

3. ∀x, y, z ∈ V (x ≤ y ∧ y ≤ z ⇒ x ≤ z) (transitivity)

If the set V in a poset (V,≤) is finite, it is being said that the poset is finite.
Two elements x, y ∈ V do not always satisfy either x ≤ y or y ≤ x. Thus,if x, y ∈ V satisfy

either x ≤ y or y ≤ x, two elements x and y are said to be comparable. In contrast, if x and y are
not comparable, x and y are said to be incomparable. We write x ≤ y if x ≤ y and x 6= y. Also, we
often write y ≤ x and y ≥ x for x ≤ y and x ≤ y respectively.

Let (V,≤) be a poset, and U be a nonempty subset of V . A node x ∈ U is minimal in
U ⇔ ∀y ∈ U : y ≤ x ∃ y ≤ x. The node x is called minimum if x is a unique minimal nodes. If any
two elements of V are comparable, then we refer to (V,≤) as a chain or a totally ordered set, and to
≤ as a linear order or a total order.

Definition 2.2 (Rooted Trees). A rooted tree T is a non-empty finite poset (V,≤) that satisfies
the following:

1. ∃!r ∈ V : x ≤ r ∀x ∈ V

2. ∀x, y, z ∈ V, x ≤ y ∧ x ≤ z ⇔ y ∧ z are comparable.

4

=nil; Database Management System

The elements of V are called nodes (or vertices) of T , and the node r is called the root of T and
denoted by root(T).

We refer to the binary relation ≤ as the hierarchical order, where, for two nodes x ≤ y, we say
that x is an ancestor of y, and y is a descendent of x. Also, for two nodes x ≤ y, we say that x is a
proper ancestor of y, and y is a proper descendent of x.

For a tree T , and a node x ∈ T , by (↑ x)T (resp. (� x)T) we denote the set of all ancestors (resp.
proper ancestors) of x ∈ T , i.e.

(↑ x)T = {y ∈ T | x ≤ y}, (� x)T = {y ∈ T | x ≤ y}.

For a tree T , by V (T), we denote the set of all nodes in T , and b y ≤ T the hierarchical order ≤
of T for clarity. We also write x ∈ T instead of x ∈ V (T) for short.

The parent of a non-root node x, denoted by par(x), is the minimum node y in the set
{z ∈ V | z ≤ x}, and conversely, the node x is called a child of par(x). The set of all children of a
node x is denoted by ch(x), i.e. ch(x) = {y ∈ V root(T) | par(y) = x}. For any two distinct children
of a node, one node is said to be a sibling of the other. A node with no children is called a leaf. The
set of all leaves in a tree T is denoted by leaves(T). The depth of a node x is, denoted by dep(x),
the number of proper ancestors of x, i.e. dep(x) = |{y | x ≤ y}|. The depth of any root node is 0.
By dep(T) we denote the maximum depth of T , i.e. dep(T) = max{dep(x) | x ∈ T}, and call it the
depth or height of T . The size of a tree T is the number of nodes in T , denoted by |T |. For a node
x, the size of ch(x) is denoted by deg(x), and referred to as the degree of x. The maximum number
of children for all nodes in a tree T is denoted by deg(T), i.e. deg(T) = max{deg(x) | x ∈ T}, and
referred to as the degree of T .

Note that a rooted tree T pursuant to 2.2 is naturally regarded as a directed graph. In fact, by
defining the set of nodes as V (T) and the set of directed edges as E(T) = {(x, par(x)) | x ∈ V (T)

{root(T)}}, (V (T), E(T)), we have a directed graph G = (E(T), V (T)).
A tree may be equipped with another order in addition to the hierarchical order. This additional

order is called the sibling order, denoted by �, and defines the left-to-right relation between nodes.

Definition 2.3 (Rooted Ordered Trees). A rooted ordered tree T is a triplet (V,≤,�) such that
the pair (V,≤) is a rooted tree, and the pair (V,�) is a non-empty finite poset that satisfies the
following:

1. For any x, y ∈ V , two nodes x and y are comparable with respect to the sibling order if and
only if x and y are equivalent, or incomparable with respect to the hierarchical order.

2. For any distinct nodes x, y, x′, y′ ∈ V ⇔ x ≤ x′, y ≤ y′ ∧ x′ � y′ ⇒ x � y.

Back in 1960-s, IBM introduced it’s IBM IMS, a hierarchical database for early mainframes,
which architecture was not supposed to have a storage component incapsulated in any way. It was a
rooted ordered tree-alike data structure, containing all the data, architecturally speaking tightly
coupled with pseudo-query language processing.

In 1970 E.D. Codd introduced first concept separating logical data structure organization from
it’s physical representation in the data storage (e.g. B-Tree) [1]. MySQL was one of the first
database management systems benefited from ideas of architecturally incapsulated storage engine.
It allowed to extend the MySQL applicability area with making it’s performance sufficient for newly
discovered suboptimal data emplacement ways.

Definition 2.4 (Storage Engine). Following E.D. Codd results, this paper defines Storage Engine
as a standardized API component used for abstraction over the actual physical data structure being
used for data storage and management.

5

=nil; Database Management System

2.1.3 Storage Engine

2.1.4 Storage Engine Commit Log

Storage engine commit log initial existance reason is to provide the durability property for the stable
storage with having a second transaction-by-transaction changelog of the overall data contained.
This was used for recovering the data emplaced in stable storage in case of corruption.

Since the Storage Engine internal construction may vary from trivial data structure incapsula-
tion with an API similar to write (to write some data into the internal data strcuture) and read
(to read some data from the internal data structure, selecting it with some criteria), to complicated
transactional mechanisms, the storage engine commit log construction may vary from "no commit
log" to write-ahead log-alike constructions.

The most trivial way to construct a commit log is to represent a set of transactions
This introduces the requirement to generalize the storage engine commit log concept with

introducing the standardized API generic enough to handle the trivial read/write communications
and .

2.2. Cluster

2.2.1 Cluster Commit Log

2.3. Consensus Protocol

2.3.1 Master-Slave Consensus Protocols

2.3.2 Master-Master Consensus Protocols

2.4. Networking

2.4.1 Protocol State Simplex

2.4.2 Protocol Structures

2.5. Protocol Adaptor

Definition 2.5 (Protocol Adaptor). Protocol Adaptor is a module consisting of networking modules
and consensus protocol definition.

3. Architecture Proposed

Following sections describe the overview of the proposed architecture with terms and concepts
defined in "Preliminaries" section ?? able to satisfy all the requirements defined in the "Introduction"
section ??.

4. Framework

In spite of most databases architecture supposes the final implementation to be a solid piece of
software, Nil DBMS intends to be based on a stack of frameworks, which are not required to be
developed from scratch:

1. Actor model multithreading framework is intended to reduce locks and data flow control,
which significally increases performance for a highload applications.

6

=nil; Database Management System

2. Server applications framework. Required to become a communication basis for database
infrastructure services.

3. Data storage framework. Incapsulation of a transaction concept, storage engine and write-ahead
log access interfaces definition.

4. Communication protocol framework. Building a network communication protocols would
require a set of highly customizable serialization techniques and network packet flow control.

Such a solution is required to build API-compatible solutions, specified for a particular platform,
with a required-only components enabled.

5. Actor Multithreading Model Framework

The majority of programs today is executed in environments of multiple processing units. A key
challenge of program development is to appropriately aggregate resources for the sake of code
performance, execution efficiency, and particular application needs. Multi-core CPUs have become
an integral part of commodity hardware even in mobiles. Heterogeneous hardware components
like graphics processing units (GPUs) and embedded controllers contribute powerful capacities to
end systems, while novel computing paradigms arise in emerging distributed ecosystems like cloud
computing [5, 10] and mobile crowd sourcing [21]. All these scenarios rely on concurrency [12], many
also require distribution. Still the dominant part of current applications is written in some popular
imperative language [28].

Imperative programming languages such as C, C++, which are going to be used for an im-
plementation, do not provide language-level concurrency semantics. They were developed before
the ’multi-core revolution’ started and thus originally aimed at single-core processor machines.
Threading libraries were added on top of existing languages that allow to start multiple threads
of execution within a process. However, dealing with concurrency is challenging, especially in
shared memory environments where parallel access to process-wide memory easily leads to race
conditions. The performance and scalability of hand-written synchronization for avoiding race
conditions depends on the implementation strategy. Coarse-grained locking is simple, but easily
causes queuing and scalability issues, whereas fine-grained locking increases scalability but also
complexity and error-proneness due to lock order, for example. Additionally, time-dependent errors
make it virtually impossible to verify a concurrent application by systematic testing [13].

A powerful approach to the problems of concurrency and distribution has been formulated in
the actor model by Hewitt, Bishop, and Steiger [16]. This formalism describes concurrent entities -
’actors’ - that execute independently, do not share state, and communicate by asynchronous message
passing. Because actors are self-contained and do not rely on shared resources, race conditions are
avoided by design. The message passing communication style facilitates a transparent deployment
and applies to (1) concurrency, if actors run on the same machine, (2) heterogeneous environments,
if actors on the same machine are bound to different memory regions and processing units, and
(3) distribution, whenever actors run on different hosts connected via the network. Actor-based
languages like Erlang [3] and frameworks such as Akka [30] or Kilim [25] have been bound to specific
niches or use vendor specific APIs (e.g., Casablanca [20]). One major objective of the present
work is to make actor programming accessible to a wider community and to broaden its range of
applications.

7

=nil; Database Management System

5.1. Shared-Nothing Architecture

Shared-nothing architecture is a distributed-computing architecture in which each node is independent
and self-sufficient, and there is no single point of contention across the system. More specifically,
none of the nodes share memory or disk storage. People typically contrast SN with systems that
keep a large amount of centrally-stored state information, whether in a database, an application
server, or any other similar single point of contention.

The advantages of shared-nothing architecture versus a central entity that controls the network
(a controller-based architecture) include eliminating any single point of failure, allowing self-healing
capabilities and providing an advantage with offering non-disruptive upgrade.

Such an architecure approach is intended to be used inside the particular database management
system process because of high accesibility requirements.

6. Server Application Framework

Server application framework intention is to manage long-running applications, so it is required
to have a mechanism to extend this application in runtime, some facilities to access paths, ensure
single instance instantiation on system, manage and catch signals and so on are also required.

This work is recurrent each time that we need build and deploy an application for particular
system, and the way to do this, change a lot on each of these systems.

For instance Windows operates with a concept of ’services’ and on Unix-based systems (POSIX)
have ’daemons’ concept that is used to build long-running executable applications and these two APIs
have no similarity. Thus, in this scenarios, is so much difficult to developer to get the application
running on Windows or on POSIX as server without a lot of work. The work is harder if it is
required to run thea same application in both systems.

Other problem raise when user want provide a way to extend the application using a plug-in
mechanism. Like Service/Daemon, the shared modules (DSO) manipulation changes a lot on
Windows and POSIX.

Obtain simple thing like paths, arguments, manipulate signal, can be annoying, since it also
don’t has a common interface to do this on both systems.

Server application framework used (Nil Application - https://github.com/nil_foundation/nil_application.git)
aims to make significantly easier for the developer get the application running in cross-platform
(POSIX/Windows) environment. Nil.Application provides a application environment, or start point
for a basic infrastructure to build an system application on Windows or Unix Variants (e.g. Solaris,
Linux, MacOS).

The =nil; Application framework uses behaviours modeled using ’aspects’ concept proposed by
’Vicente J. Botet Escriba’, that allow easy extension and customization of library components. The
application modes uses these components internally to achieve the user desirable behaviours.

Nil Application intends to provide some following features:

• Run application as Windows Service;
• Run application as UNIX/POSIX Daemon;
• Plugin extension system;
• Process(executable) Single instance Instantiation support;
• Application SIGNAL/Callbacks customization;

8

=nil; Database Management System

7. Data Storage Framework

7.1. Data Structures Separation Concepts

=nil; DBMS architecture assumes strict data structure types separation by its’ itentions concept
usage. That means all the framework would consist, besides other parts, of three data management
libraries:

1. Data storage management library

2. Storage operations processing library

3. Storage replication library

Such a set of components is required by the separation concept as presented below:

1. Runtime-defined serializable/deserializable data structures used for the data storage manage-
ment. These ones are required for passing processed data to the storage engine.

2. Compile-time defined data structures used for definition of data management procedures.

3. Runtime-defined serializable/deserializable communication protocol data structures used for
networking data transferring.

4. Compile-time defined communication protocol data structures used for managing the network-
received/sent data.

Similar techniques are used inside the storage consisdency conditions definitions which is better
described in 20.

Basically, such a separation comes from the idea of reflection mechanism, which actually generates
these runtime-defined data structures automatically during the compilation stage. But such an
approach makes it difficult to manage storage data structure migrations, communication protocol
versioning or data management procedures changes without significant changes made all over the
project.

7.2. Database Interface Unification

8. Communication Protocol Framework

The implementation of the binary communication protocols can be a tedious, time consuming and
error-prone process. Therefore, there is a growing tendency among developers to use third party
code generators for data serialization/deserialization. Usually such tools receive description of the
protocol data layout in separate source file(s) with a custom grammar, and generate appropriate
serialization/deserialization code and necessary abstractions to access the data. There are so many
of them: ProtoBuf, Cap’n Proto, MessagePack, Thrift, Kaitai Struct, Protlr. All of these tools
are capable of generating C++/Java/Python code. However, the generated code quite often is not
performant enough to be used in limited-resource systems, especially bare-metal ones. Either the
produced C++ code or the tool itself has at least one of the following limitations:

• Inability to specify binary data layout. Many of the tools use their own serialization format
without an ability to provide custom one. It makes them impossible to use to implement
already defined and used binary communication protocol.

9

=nil; Database Management System

• Inability to customise underlying types. Most (or all) of the mentioned code generating tools,
which do allow customisation of binary data layout, choose to use std::string for string
fields and/or std::vector for lists, as well as serialization/deserialization code is generated
to use standard streams (std::istream and std::ostream). Even if such ability is provided,
it is usually "global" one and do not allow substitution of types only for specific messages /
fields.

• Limited number of supported data fields or limited number of their serialization options. For
example, strings can be serialized by being prefixed with their size (which in turn can have
different lengths), or being terminated with \0, or having fixed size with 0 padding if the
string is too short. There are protocols that use all three variants of strings.

• Poor or weak description grammar without an ability to support conditional serialization/de-
serialization. For example, having a value (such as single bit in some bitmask field) which
determines whether some other optional field exists or not.

• Lack of polymorphic interface to allow implementation of the common code for all the defined
messages.

• When polymorphic interface with virtual functions is provided, there is no way to exclude
generation of unnecessary virtual functions for a particular embedded application. All the
provided virtual functions will probably remain in the final image even if they are not used.

• Lack of efficient built-in way of dispatching the deserialized message object into its appropriate
handling function. There is a need to provide a separate dispatch table or map from message
ID to some callback function or object.

• Lack of ability to override or complement the generated serialization code with the manually
written one where extra logic is required.

• Complex and limited protocol description domain-specific language makes it required for the
devleoper to learn another one language to describe the serialization/marshalling, but not the
protocol workflow.

9. Pluggability

Plugin system is being widely used in various databases: ElasticSearch, MongoDB, AragnoDB (it
is called ApplicationFeatures actually). It allows to configure the database behavior without
recompiling the core. Extreme parametrization requirements comes with

10. Pluggable Storage Engines

11. Pluggable Virtualization Engine

12. Pluggable Networking

13. Virtualization

Extreme parametrization comes with extreme requirements. Various database node replication
protocols, various data structures marshalling formats, various storage consistency conditions, various
write-ahead log structures - databases are highly variative at all these params and more. The
intention to introduce the open standard for database management systems components requires
similarities generalization and factoring out and parameterizing the differencies.

A fine example is a write-ahead log data structure, which is usually a linked list of transactions.
The basic requirement for the set internal structure, responsible for the transaction log, is considered

10

=nil; Database Management System

to be a partially ordered. That means lots of data structures are convenient for this position:
backward-linked list, double-linked list, hashed trees, concatenation-homomorphic signed lists and
trees, literally any set which is convenient for the partially ordered set requirements.

It is believed the reader should be fine with the partial ordered set definition, but below lays the
reminder.

Definition 13.1. A partially ordered set is a set P with a binary relation R ⊇ P × P satisfying all
of the following conditions.

• Reflexivity: (x, x) ∈ R∀x ∈ P

• Antisymmetry: (x, y) ∈ R; (y, x) ∈ R⇒ x = y

• Transitivity: (x, y) ∈ Rand(y, z) ∈ R⇒ (x, z) ∈ R

Pluggability of such differencies approach is widely used across various databases: AragnoDB,
MongoDB, ElasticSearch. Inside the trusted context, when all the database nodes are located in a
well-known cluster, or are highly localized in some physical place, when the trivial permission system
like users with passwords/key access control is enough for the database not to be corrupted and
there is a trusted source of verified plugins, which are guaranteed not to harm the operating system
it works fine. But outside the trusted context, when even Byzantine fault tolerance conditions are
not required to be satisfied, any plugin source code repository cannot be trusted. Inspection of every
such a repository can be a time-consuming process. Futhermore, assuming every Nil DBMS database
includes replication protocol definition, storage consistency conditions, set of state modifiers and lots
of other executable pieces of paramertization for every particular database, audit can last forever.
The solution is to isolate this parametrization and execute it in some virtualized environment for
the user data and operating system safety.

Next subsections define the virtualized parametrization in terms of [2].

14. Storage Consistency Conditions Definition

Storage consistency conditions differs a lot in every particular DBMS, storage engine or a single-
database management software. For instance in MongoDB, write operations are atomic at the
document level, and no single write operation can atomically affect more than one document or
more than one collection. A denormalized data model with embedded data combines all related
data for a represented entity in a single document. This facilitates atomic write operations since a
single write operation can insert or update the data for an entity. Normalizing the data would split
the data across multiple collections and would require multiple write operations that are not atomic
collectively.

However, schemas that facilitate atomic writes may limit ways that applications can use the data
or may limit ways to modify applications.

Futhermore, MongoDB uses schema validation for every insert or update with a validation rule
specialized for every collection. That guarantees the mailformed query would break the particular
database node storage consistency, so it gets rejected. [3]

For example, the following example specifies validation rules using MongoDB JSON schema:

1 db.createCollection("students", {
validator: {

3 $jsonSchema: {
bsonType: "object",

5 required: ["name", "year", "major", "gpa"],
properties: {

7 name: {

11

=nil; Database Management System

bsonType: "string",
9 description: "must be a string and is required"

},
11 gender: {

bsonType: "string",
13 description: "must be a string and is not required"

},
15 year: {

bsonType: "int",
17 minimum: 2017,

maximum: 3017,
19 exclusiveMaximum: false ,

description: "must be an integer in [2017, 3017] and is required"
21 },

major: {
23 enum: ["Math", "English", "Computer Science", "History", null],

description: "can only be one of the enum values and is required"
25 },

gpa: {
27 bsonType: ["double"],

minimum: 0,
29 description: "must be a double and is required"

}
31 }

}
33 }

})

Nil DBMS storage consistency conditions definition should be wiser. It should include the
ability for the database to define the complex schema and current data storage state validation
with turing-complete language because of the maintenance of wide variety of supported databases is
required.

Considering the storage consistency conditions definitions could be categorized to several types:

1. On-transaction stateless conditions make sure the transaction data is consistent. A fine
example - MongoDB schema validators.

2. On-transaction stateful conditions make the current storage state checks for the particular
transaction before it could be considered applied. MongoDB Compass tool implements the
declarative basic domain-specific language, which basically allows such a validation, but no
turing-complete operations are available.

3. In-storage continious stateful and stateless checks makes all the database node change their
state simultaneously.

This makes no questions in case of no extraoridnary performance demands are made - database
architecture supposes the built-in interpreter in every node executes these definitions, whether they
are defined in turing-complete language or not.

In case of time-consuming computing has to be made to decide if the transaction should be
accepted or not, n-distanced executables are proposed to be used. The particular protocol resolving
the n-distanced computing results depends on the database.

Stored executables are considered to be able to communicate with the outside via API, which
can be an in-memory binary communication protocol (in case of 0-distanced executables) or a
network/socket-based communication protocol, depending on the distance of the stored executable

12

=nil; Database Management System

(in case of n-distanced executables). Such a communication-type split is required to reduce latency
within data-management tasks.

Following prototype consistency condition definition example in C++ would demonstrate the
proposed.

14.1. Consistency Conditions Definitions Communication Protocol

First of all, stored executables are proposed to be a virtualized full-featured processes, just like it is
in Unix systems. That means no custom initialization function is allowed in generic n-distanced
case. That is why the generic API definition would be required for the preprocessing (AST-tree
parsing-based presumably) could be done in a way convenient for the particular recommended
execution distance.

2 /**
@class api

4 @brief Generic API class.

6 Introspection toolchain would use this class to identify the consistency
conditions API classes to generate the convenient for the selected execution

8 distance communication way.

10 @note This class intends to be included implicitly
*/

12 template <typename ApiType , typename ImplType >
class api : public ... {

14 public:

16 typedef ApiType api_type;
typeder ImplType impl_type;

18

...
20

};

1.
Next generic implicitly included part of the storage consistency definition includes the generic

consistency definition way. Distance definition is made with a library-level mark for the preprocessing
toolkit.

1 /**
@class consistency

3 @brief Represents consistency condition definition

5 @note Platform -dependent primitives definitions could be replaced by
more complex endiannes -independent types

7 */
template <template <uint32_t D> typename T = distance <D>>

9 class consistency_condition <T<D>> {
public:

11 typedef T distance_type;

13 virtual bool handle_value(const Type1 &value) override {

1More about proposed communication protocol definition way is described in [4]

13

=nil; Database Management System

15 }

17 virtual bool handle_value(const Type2 &value) override {

19 }

21 ...

23 virtual bool handle_value(const TypeN &value) override {

25 }

27 ...

29 };

Now particular-distanced consistency conditions are required to be defined. More about database
state management way is described in ??.

Following example roughly sketches the 0-distansed consistency condition gets transaction applied
only and only if some other database has some named data structure with value stored equal to the
value getting proposed in the transaction.

1 class condition_0 : public consistency_condition <distance <0>> {
public:

3

virtual bool handle_value(const Type1 &value) override {
5 // Example transaction consistency condition dependent on the current

// state of another database. Supposed to return true if selection went
7 // well

9 database &db = application.get_databases ()["bitcoin"];

11 return db.select <bitcoin ::key >([&](const bitcoin ::key &v) {
v.balance == value.balance;

13 }));
}

15

virtual bool handle_value(const Type2 &value) override {
17 ...

}
19

...
21

virtual bool handle_value(const TypeN &value) override {
23 ...

}
25 };

27 class condition_1 : public consistency_condition <distance <1>> {
public:

29

virtual bool handle_value(const Type1 &value) override {
31

}
33

virtual bool handle_value(const Type2 &value) override {
35

}

14

=nil; Database Management System

37

...
39

virtual bool handle_value(const TypeN &value) override {
41

}
43 };

45 class condition_42 : public consistency_condition <distance <42>> {
public:

47

virtual bool handle_value(const Type1 &value) override {
49

}
51

virtual bool handle_value(const Type2 &value) override {
53

}
55

...
57

virtual bool handle_value(const TypeN &value) override {
59

}
61 };

/**
2 @class consistency_api

@brief Represents consistency conditions definition communication API.
4

This class represents the stored executable communication API and depending
6 on the executable distance set for the particular consistency condition

(resolved as consistency_condition :: distance_value) it would be preprocessed
8 as binary in -memory or network communication protocol.

10 @note templated api class is required for the reflection engine to be able
to introspect class members definition.

12 */
class consistency_api : public api <consistency_api , consistency_0 > {

14 public:

16 consistency_api(const impl_type *input_impl) : impl(input_impl) {

18 }

20 template <typename T>
void handle_value(T value) {

22 impl.handle_value(value);
}

24

template <typename T>
26 T get_value(const &T) {

return impl.method ();
28 }

30 protected:

32 impl_type *impl;

15

=nil; Database Management System

};

1

class consistency_api : public api <consistency_api , consistency_1 > {
3 public:

5 consistency_api(const impl_type *input_impl) : impl(input_impl) {

7 }

9 template <typename T>
void handle_value(T value) {

11 impl.handle_value(value);
}

13

template <typename T>
15 T get_value(const &T) {

return impl.method ();
17 }

19 protected:

21 impl_type *impl;
};

14.2. 0-distanced Executables

0-distanced executables usage deserves the separate subsection because of the data storage integration
and interaction way is slightly different from outside of the process execution devices.

15. Communication Protocol Definition

Inspite of storage consistency conditions can be defined as n-distanced executables ∀ n ∈ Z+,
database node replication protocol transport definition is bounded to the 0-distanced ones, because
of this being a basement for the network-replication process.

16. Data Consistency

17. ACID Compilancy

18. MVCC

19. Authenticated Data Structures Write-Ahead Log

Recent introduction of merkle-tree hashed write-ahead log databases introduces requirements to
make the write-ahead log parametrization available.

20. Data Management

16

=nil; Database Management System

Figure 1: 4-layered
storage

Database storage engines and corresponding data management ways are
used to get built around the data concept the database management system
getting them used, which is a fine way to create a single-purposed database
management system. Fine example is a ClickHouse database [5], which is
designed to be a column-oriented database suitable for analytics processing.
Coming to the set of storages, which intention is to be used for multiple
different types of data, several types of solutions comes up:

• Use the compromise database with compromise-performanced data
storage engine (p.e. MongoDB [3]) and to be sure the performance
of processing any type of data is a trade-off.

• Use the multi-model database, which (p.e. FoundationDB [6] or
AragnoDB [7] which "cast" different model types into a key-value
storage (AragnoDB casts the data to RocksDB storage). But such an
approach means significant performance drop. FoundationDB SQL
layer performance is, for example, twice as lower than MySQL [8].

So that is why Nil DBMS intends to be a multi-level storage database
with customizable storage engines. Multi-level storage means ordered
storage engine sequence, organized to provide the highest response rate
possible. Such layers could be a caching layer (p.e. LRU-caching), consis-
tent in-memory storage, on-disk reduced dataset caching layer, consistent
on-disk storage. An example of 4-layered data storage with caching in-
memory storage, consistent in-memory storage, caching on-disk storage
and consistent on-disk storage at the end is presented in ??.

Such a levelling is only applicable to the particular database - it is
basically a part of database configuration. Such an approach leads to the

composite database concept.

17

=nil; Database Management System

21. Composite Database

Figure 2: Composite
Database

Coming to database management systems, almost every of such
a system has its’ own database concept. Most of these concepts
mean this is an abstraction over database scheme, data itself, write-
ahead log in predefined format, data integrity conditions definitions,
sometimes it also includes users authorization data. Composite
database concept extends the common database term definition. It
proposes to:

• Store and process database user permissions using the same stor-
age engine and with the same techniques as the business-data
itself. This leads to the extension of available authorization
ways set and allows developers to define custom user authen-
tication techniques (p.e. cryptographic user authentication
schemes).

• Store and process database consistency conditions definition
using the same storage engine and with the same techiniques
as the business-data itself.

• Store and process database replication instructions using the
same storage engine and with the same techniques as the
business-data itself. These replication instructions intended to
be implemented as adapters of several types:

– Particular data-handling software transport protocol
adapters: p.e. MongoDB daemon adapter or bitcoind
daemon adapter.

– Particular data scheme replication instructions: p.e. con-
sistency conditions required for the currently replicating
transaction to be applied.

• Store and process as database metadata storage scheme/pseudo-
scheme.

• Store and process as executable in virtualized enviroment
database metadata write-ahead log data structure definition.
Most of databases do not separate the write-ahead log defi-
nition from the particular storage engine used, but such a factoring out allows to handle
authenticated write-ahead log databases (p.e. bitcoin database).

22. Data Structures Separation Concepts

Nil DBMS uses the concept of a strict data structure types separation:

1. Runtime-defined serializable/deserializable data structures used for the data storage manage-
ment.

2. Compile-time defined data structures used for definition of data management procedures.

3. Runtime-defined serializable/deserializable communication protocol data structures used for
networking data transferring.

18

=nil; Database Management System

4. Compile-time defined communication protocol data structures used for managing the network-
received/sent data.

Basically, such a separation comes from the idea of reflection mechanism, which actually generates
these runtime-defined data structures automatically during the compilation stage. But such an
approach makes it difficult to manage storage data structure migrations, communication protocol
versioning or data management procedures changes without significant changes made all over the
project.

Following rough and simple example would make it clear:

class A {
2 public:

int64_t a;
4 char *b;

}
6

template <typename T, ...>
8 class static_reflection_structure {

public:
10 ...

}
12

template <>
14 class static_reflection_structure <A, ...> {

...
16

const static uint16_t member_count = 2;
18

...
20 }

22 template <typename T, typename String , typename SequenceContainer >
class dynamic_reflection_structure : public some_base <...> {

24 public:
...

26

virtual String get_typename () override {
28 return "T";

}
30

uint16_t get_member_count () {
32

}
34

SequenceContainer <String > get_members_list () {
36

}
38

...
40 };

42 template <typename String , typename SequenceContainer >
class runtime_structure <A> : public some_base <...> {

44 public:
...

46

/**
48 In case of runtime -defined data identifier would be

required to change - it can be changed to any string still being a

19

=nil; Database Management System

50 representative class for A
*/

52 virtual String get_typename () override {
return "A";

54 }

56 uint16_t get_member_count () {
return 2;

58 }

60 ...
};

62

It is assumed for every data structure to have a default-generated such a reflected meta-information
structure set until the specific flag was passed to the compilation suite. (Note, it is a compilation
suite because of no modified compiler intends to be used, only preprocessing and code pre-generating).
In case of special serializable data structure requirements this can be set explicitly without using
code generation.

Such a meta-information intends to be used in virtualized executables and in the particular
framework definitions as well.

23. No Query Language

Inspite of traditional approach to data management inside the DBMSs’ with custom domain-specific
language interpreters (some of them, p.e. SQL, went too far and got standartized), Nil DBMS
proposes the turing-complete language data accessors/mutators definition.2 Accessing or mutating
data intends to be implemented at library-level in combination with code introspection. Such an
approach enables the database user to perform cross-database access or mutation (select or insert).

Following example would demonstrate the selection:

1

#include <nil/database/select.hpp >
3 #include <nil/container/sequence.hpp >

5 ...
class data_object ... {...}; ///< dynamically reflected object which

7 runtime -used metadata can be set automatically (to match the actual
programming -language semantics metadata) or manually to make it convenient for

9 optimizations and concept -separation.
...

11

... function () {
13 ... &website_database = application.db["website"];

website_database.select <data_object >.get <by_id >([&](... &comparison_object) {
15 if (comparison_object.id > 50) {

if (comparison_object.field == some_other_value) {
17 ...

19 // Here follows any other turing -complete selection conditions

21 ...

2More about NoDSL protocol approach can be found in [4]

20

=nil; Database Management System

23 return true;
}

25 }
});

27 }

29

Example provided assumes the lambda passed to get<by_id>() would return true if the object
considered in the index is convenient to be returned and false if it is not.

Such a data management way, in case of the selection being performed as 0-distanced executable,
intends the data contained in the index by_id (which is also an automatically of manually introspected
object, actually) to be copied into virtualized environment (kind of MVCC-session initialization) or
accesed via user-space shared memory-like mechanism. In case of the selection gets performed as
n-distanced executable, an extensive introspection of a selector function intends to be performed,
and the actual computation gets split between (cluster?) nodes connected.

Following example demonstrates the insertion or mutation of the indexed data storage with
cryptographically-authenticated transactions:

2 #include <nil/database/insert.hpp >
#include <nil/database/modify.hpp >

4

void operation_example () {
6

}
8

...
10 /**

Dynamically reflected object which runtime -used metadata can be set
12 automatically (to match the actual programming -language semantics metadata)

or manually to make it convenient for optimizations and concept -separation.
14 */

class data_object ... {...};
16

...
18

... function (... params) {
20 // A database identifier of any other type can be used , it is not insisted

// to be a string
22 ... &bitcoin_database = application.db["bitcoin"];

24 bitcoin :: transaction trx;
trx.operations = {[&](

26

bitcoin :: signed_transaction strx = trx.sign(params.key_imported);
28 bitcoin_database.push_transaction(strx); ///< Such an example would be fine

in case of prepared and pre -signed transaction availability.
30

... &website_database = application.db["website"];
32

website :: transaction trx = {.
34 }

36

21

=nil; Database Management System

24. Query Sharding

25. Performance

References

1. Codd E. F. A Relational Model of Data for Large Shared Data Banks // Commun. ACM. New
York, NY, USA, 1970. Vol. 13, no. 6. p. 377–387. URL: https://doi.org/10.1145/362384.362685.

2. Komarov M. Storage-Centric Computing Architecture. 2018. URL:
https://github.com/nemo1369/nil_foundation/dbms/execution_architecture/main.pdf.

3. Inc. M. Data Models. https://docs.mongodb.com/manual/data-modeling/. 2018. [Online;
accessed 19-June-2018].

4. Komarov M. NoDSL Communication Protocol Approach. 2018. URL:
https://github.com/nemo1369/nil_foundation/libs/protocol/main.pdf.

5. LLC Y. ClickHouse. https://clickhouse.yandex. 2016. [Online; accessed March 3, 2021].

6. Inc. A. FoundationDB. https://foundationdb.org. 2018. [Online; accessed March 3, 2021].

7. Inc. A. AragnoDB. https://aragnodb.com. 2018. [Online; accessed March 3, 2021].

8. Hugg J. FoundationDB’s Lesson: A Fast Key-Value Store is Not Enough. https://www.voltdb.
com/blog/2015/04/01/foundationdbs-lesson-fast-key-value-store-not-enough/.
2015. [Online; accessed March 3, 2021].

9. Kelner J. A., Maymounkov P. Electric routing and concurrent flow cutting // CoRR. 2009. Vol.
abs/0909.2859. URL: http://arxiv.org/abs/0909.2859.

10. Native Actors – A Scalable Software Platform for Distributed, Heterogeneous Environments /
D. Charousset, T. C. Schmidt, R. Hiesgen et al. // Proc. of the 4rd ACM SIGPLAN Conference
on Systems, Programming, and Applications (SPLASH ’13), Workshop AGERE! New York,
NY, USA: ACM, 2013. Oct. P. 87–96.

11. Charousset D., Hiesgen R., Schmidt T. C. Revisiting Actor Programming in C++ //
Computer Languages, Systems & Structures. 2016. Vol. 45. P. 105–131. URL:
http://dx.doi.org/10.1016/j.cl.2016.01.002.

12. Komarov M. Storage-Centric Computing Architecture. 2018. URL:
https://github.com/nemo1369/nil_foundation/dbms/execution_architecture/main.pdf.

13. ARIES: A Transaction Recovery Method Supporting Fine-Granularity Locking and Par-
tial Rollbacks Using Write-Ahead Logging / C. Mohan, D. Haderle, B. Lindsay et al. //
ACM Trans. Database Syst. New York, NY, USA, 1992. Vol. 17, no. 1. p. 94–162. URL:
https://doi.org/10.1145/128765.128770.

22

https://docs.mongodb.com/manual/data-modeling/
https://clickhouse.yandex
https://foundationdb.org
https://aragnodb.com
https://www.voltdb.com/blog/2015/04/01/foundationdbs-lesson-fast-key-value-store-not-enough/
https://www.voltdb.com/blog/2015/04/01/foundationdbs-lesson-fast-key-value-store-not-enough/

	Introduction
	Cluster Consistency Mechanisms
	Replication Protocol Features Distribution
	Cluster Consistency Conditions
	Storage Engines
	Query Language
	Paper Contribution

	Preliminaries
	Architecture Elements
	Storage Engine
	Trees Notation
	Storage Engine
	Storage Engine Commit Log

	Cluster
	Cluster Commit Log

	Consensus Protocol
	Master-Slave Consensus Protocols
	Master-Master Consensus Protocols

	Networking
	Protocol State Simplex
	Protocol Structures

	Protocol Adaptor

	Architecture Proposed
	Framework
	Actor Multithreading Model Framework
	Shared-Nothing Architecture

	Server Application Framework
	Data Storage Framework
	Data Structures Separation Concepts
	Database Interface Unification

	Communication Protocol Framework
	Pluggability
	Pluggable Storage Engines
	Pluggable Virtualization Engine
	Pluggable Networking
	Virtualization
	Storage Consistency Conditions Definition
	Consistency Conditions Definitions Communication Protocol
	0-distanced Executables

	Communication Protocol Definition
	Data Consistency
	ACID Compilancy
	MVCC
	Authenticated Data Structures Write-Ahead Log
	Data Management
	Composite Database
	Data Structures Separation Concepts
	No Query Language
	Query Sharding
	Performance
	Bibliography

