zkSharding Solution Brief

January 23, 2025

1 Overview

=nil;’s zkSharding introduces a scalable sharded-zkRollup solution for Ethereum that leverages
sharding and SNARKSs to address the network’s scalability challenges while maintaining decentral-
ization and security. Unlike conventional rollups, zkSharding partitions the network into parallel
execution shards, where each shard processes transactions independently while maintaining unified
liquidity and state. The contracts deployed on these shards communicate asynchronously [?],
enabling them to send messages to contracts on other shards without pausing execution to await
the message results. This approach allows zkSharding to achieve significantly higher throughput
without fragmenting liquidity or increasing the complexity of cross-shard interactions. In this
document, we explain how we achieve these objectives in detail.

At a high level, zkSharding is composed of three interconnected components. These components
are not structured as hierarchical layers, but rather work collaboratively, each serving a distinct
role:

1. L1 (Ethereum): Acts as the settlement and data availability layer. Shards submit
aggregated state proofs and data commitments here for finalization and security.

2. Main Shard: Coordinates execution shards, manages cross-shard communication, and
ensures system-wide state synchronization and integrity.

3. Execution Shards: Handle user transactions and smart contracts in parallel, each main-
taining its own state and processing a subset of transactions.

zkSharding’s primary objective is to enable scalable computation within a decentralized
framework. By dividing workloads across multiple shards, zkSharding increases transaction
throughput without centralizing control. L1 acts as an additional layer of security by verifying
zkSharding’s state transition validity through submitted validity proofs. These proofs allow
zkSharding to integrate with Ethereum’s canonical blockchain. In this way, it ensures efficiency
and security while preserving decentralization. Next, we give an overview of the role of L1 in
zkSharding system before diving into the design of zkSharding (See Figure 1).

1.1 L1 Support in zkSharding

From L1’s perspective (see Figure 1), zkSharding is a blackbox which periodically submits
cryptographic proofs and data blobs to verify its operations without revealing internal processes.
L1 provides key contracts for state validation, deposits, withdrawals, and data availability. While
L1 provides zkSharding with a reliable settlement layer to verify zkSharding’s state and a data
availability layer, zkSharding enables L1 to achieve higher throughput by offloading transaction
processing to zkSharding. The L1 network is unaware of the detailed execution inside zkSharding,
but it plays a crucial role in maintaining zkSharding’s trustworthiness and security.

For more insights into zkSharding’s internal mechanics and how it achieves high throughput,
refer to the next sections. Now, we introduce the key functionalities that L1 provides to support
zkSharding.



zkSharding Solution Brief

State proofs,
Transactions,

, S . Bridge Messages
Blob commitments, © ~
.

S~ zkSharding

Figure 1: Visualizing zkSharding as a blackbox

L1 Data Availability: Proto-Danksharding (EIP-4844) [?] is a proposal aimed at reducing
rollup costs when posting data to Ethereum’s L.1. zkSharding leverages this by utilizing Ethereum’s
data availability layer. zkSharding submits executed transactions as a compressed batch, denoted
as B*, in the form of a data blob. This blob is committed to Ethereum’s execution layer via
a KZG commitment |?|, which represents the data as a polynomial for efficient storage and
verification. Batch compression is utilized to maximize the number of transactions that can be
efficiently stored within a single blob, ensuring optimal use of available space.

State Validity Contract: The State Validity Contract is crucial for ensuring the correctness
of zkSharding’s new state after processing transactions across all shards. It verifies that the
new state correctly reflects the processed transactions, represented by B, from all shards. When
zkSharding submits a new state root s to L1, it also provides a proof m to prove the correctness
of this new state. The contract checks this proof against the KZG commitment Comy, to the
compressed batch B* of B.

More specifically, the State Validity Contract verifies that the new state root s was created by
correctly applying the transactions from the commitment Comgy, to the last verified state st’ with
the root s’. Conceptually, the state update process in zkSharding can be represented by the state
transition function F, which takes the current state st’ and a batch B of transactions from all
shards, and produces a new state st with the root s by executing all the transactions correctly.

The State Validity Contract receives s, s’, and the proof 7w as inputs and also accesses the
associated polynomial commitment Comg,. It then verifies the following:

e there exists B such that F(st’, B) outputs a new state st with the root s, and
e B* committed in Comy, is the compressed version of B.

Deposit/Withdrawal Contracts: Deposit contract secures asset transfers from Ethereum to
zkSharding. When users deposit assets like ETH or ERC-20 tokens, they are locked on L1 and
reflected within zkSharding for use on L2. The Withdrawal Contract handles asset transfers from
zkSharding back to L1. Once zkSharding processes the withdrawal and generates a proof, the
contract verifies it and releases the assets on Ethereum, ensuring a smooth exit to L1.

We have additional operational contracts deployed on L1, but here we focus on the key ones
that ensure the secure functioning of zkSharding.

2 zkSharding Architecture

As previously discussed, zkSharding operates across three interconnected components. Each
component serves a distinct function, yet they work together to ensure scalability and security.
In this section, we explore how they are linked and describe the architecture that enables state
synchronization. We also introduce the key actors who play critical roles in the system.



zkSharding Solution Brief

2.1 Actors

The core participants in zkSharding’s architecture are validators, who play vital roles across
different layers. zkSharding launches with a centralized set of validators. Validators can operate
in multiple roles:

Validators are responsible from building and maintaining the main shard and execution shards.
When operating the main shard, they participate in running the global consensus algorithm
which helps to the synchronization of states across all execution shards. In the execution shards,
validators are responsible for executing shard-specific transactions and maintaining its local
consensus. Beyond this, validators can be the part of the synchronization committee SC. The
members of SC are responsible for interfacing zkSharding with L1. They manage tasks like
submitting data, proofs, and transactions to the L1 contracts outlined in Section 1.1. The
committee is re-elected each epoch based on protocol parameters, and only validators opting for
this role participate. To maintain clear role separation, a validator cannot simultaneously serve
on both the main shard and the SC committee.

In addition to validators, zkSharding has a role prover. Each prover P is part of a dedicated
proving network and is responsible for executing zkSharding’s proving algorithm (see Section 4).

Furthermore, there is the role of relayers, who ensure the reliable transmission of contract
calls from Ethereum to zkSharding.

2.2 Components

In this section, we describe the structure and functionality of the main shard and execution
shards.

2.2.1 Main Shard:

Main shard functions as a specialized blockchain that manages operational transactions crucial to
the integrity of zkSharding. The key operational transactions are as follows:

¢ Randomness Generation: To support unpredictability outcome of some protocols in
zkSharding, the main shard incorporates a randomness generation mechanism.

¢ Bridge-Related Operations: The main shard is responsible for managing operations
related to bridging assets and data between zkSharding and Ethereum.

e Finalizing Execution Shard Blocks: Once an execution shard completes a block, its
header is submitted to the main shard, which verifies and finalizes the block header by
including it in the global consensus (see Section 3.2)

The main shard functions similarly to a referee in a game. Its role is to verify the block
headers from execution shards to validate that each shard adheres to network rules. This setup
ensures that all execution shards maintain a synchronized view. It is achieved by the global
consensus provided by the main shard.

The global consensus in the main shard coordinates and synchronizes the states of all execution
shards. It provides a consistent and unified system state. This internal process is distinct from L1
consensus, which validates and finalizes the state of both the main shard and execution shards
by verifying state validity proofs. While L1 guarantees the validity of zkSharding’s state, it is
not involved in the internal synchronization or consensus mechanisms of zkSharding, which focus
on managing shard execution and coordination, In a nutshell, L1 consensus offers an additional
layer of protection through Ethereum’s strong security guarantees. This design combines the
decentralized scalability benefits of sharding with Ethereum’s proven security. To summarize the
consensus layers shown in Figure 2:

e Execution shards run local consensus with their validators to maintain synchronization of
their state in the shard.



zkSharding Solution Brief

Global Consensus

L1 Consensus

Local | Local Local | Local
[ N

Cons. | Cons. Cons. | Cons.

Figure 2: Consensus layers in zkSharding: Local consensus aligns execution shard states, global consensus
by the main shard synchronizes them, and L1 consensus on Ethereum finalizes the state of
both main and execution shards for overall system security.

e The main shard runs global consensus, ensuring synchronization and consistency of states
across all execution shards.

e L1 verifies and finalizes the states of both the main shard and execution shards, ensuring
overall zkSharding finality.

2.2.2 Execution Shard

In zkSharding, there are multiple execution shards, each managing its own set of accounts. An
account is the fundamental data unit in each shard and includes the address, balance, storage
root, and a hash of the contract’s source code. Notably, all accounts in zkSharding are represented
by smart contracts. By structuring all accounts as smart contracts, zkSharding centralizes
operational logic across the system. It simplifies message handling and state updates.

Each execution shard operates a dedicated mempool that temporarily stores external messages
sent by users, dApps, or other external sources. These messages are queued in the mempool until
the associated smart contract processes them. During contract execution, if a contract generates
additional internal messages to other contracts, these bypass the mempool and are instead routed
directly to their target contracts on either the same or another shard. This direct routing avoids
unnecessary queuing, creating a more efficient and streamlined message processing flow across
execution shards.

zkSharding deploys enshrined token design [?] in execution shards which offers efficient
approach to managing token transaction across execution shards. With enshrined tokens, the
core token functions (like transfer, balance checking, and approvals) are directly built into the
core protocol of execution shards rather than being implemented through smart contracts. This
allows these operations to benefit from protocol-level optimizations. In this way, the protocol
itself handles the complexity of moving tokens between execution shards.

Execution shards communicate through a cross-shard communication protocol. It guarantees
that messages between shards are eventually executed. In this protocol, even execution shards
which are not message’s destination play a supporting role by storing message-related data, thereby
helping to enforce eventual execution on the destination shard. To enable efficient communication
between execution shards, zkSharding allow smart contracts deployed on different execution
shards to interact without halting execution. The asyncCall function [?] is integral to this
feature. It enables a contract on one shard to call functions on contracts located on other shards
directly, without waiting for an immediate response. This mechanism produces a message that
is processed by the destination shard asynchronously, allowing parallelism across shards and
improving network scalability.

A unique data structure of our execution shards is the ShardDAG |[?]. It is a structure that
connects blocks from different execution shards as well as blocks from the main shard. This shared
structure imposes a global ordering of transactions that mitigates Maximum Extractable Value
(MEV) attacks [?, ?] especially for cross-shard transactions and guarantees ultimate cross-shard
transaction processing.



zkSharding Solution Brief

) Enforce Order of Transactions are
Enforce Data Enforce Receipt of Processin Processed &
Availability of Cross- Cross-Shard r— . g p— o
; ) Transactions & Cross- Exploitation
Shard Transactions Transactions ) )
Shard Transactions Constraints

Figure 3: The ShardDAG rules enforce a strategy that ensures secure cross-shard transactions: (1)
Child Condition enforces data availability by requiring broadcast to more than F shards;
(2) Parent Condition guarantees receipt by integrating data from multiple shards; and (3)
Main-Parent Condition maintains order with the main shard. Together, these rules ensure
secure processing and reduce exploitation risks.

ShardDAG: It is inspired by DAG-based blockchains |?, ?|, and operates as follows: When a
validator generates a block B for execution shard S;, in addition to the transactions, it adds the
following elements to connect B to other blocks to form the DAG:

e The hash of the latest block from the same shard §;, as in a typical blockchain.

e Hashes of blocks from other shards, following the ShardDAG rules [?]|, which act as
acknowledgments that the execution shard has received data from those other shards.

e The hash of the latest main shard block to ensure that cross-shard transactions are eventually
processed and recognized by the entire network.

The ShardDAG enforces rules that are designed to maintain security, data availability, and
orderly processing of transactions. The key rules include :

e Child Condition: An execution shard block is not finalized until it has received ac-
knowledgments from over F' other shards, where F' represents the system’s tolerance for
potentially adversarial shards. This condition helps ensure cross-shard data is sufficiently
distributed, preventing single-shard control over transaction flow and supporting broad data
availability.

e Parent Condition: An execution shard block must have a subgraph that includes blocks
from more than F' other shards relative to its predecessor. This condition encourages regular
integration of cross-shard data, reducing the risk of shards bypassing or isolating cross-shard
transactions.

e Main-Parent Condition : A shard block should not reference the same consensus block
for more than X consecutive blocks, where X depends on the execution shard’s block
time. This helps shards stay aligned with updates from the main shard. This promotes
synchronization across the network.

See Figure 3 for a detailed illustration of how these rules enforce constraints for succesfull
and orderly execution of transactions.

3 Transaction Lifecycle: From Execution to L1 Finality

In this section, we describe the lifecycle of a transaction in zkSharding, while highlighting specific
solutions introduced to ensure both security and efficiency.

In zkSharding, there are two fundamantal messages: external and internal . External messages
originate from external actors and are sent directly to the mempool of the contract’s execution
shard for processing. Internal messages, on the other hand, are generated during contract
execution and do not enter the mempool, as we explained in Section 2.2.2. We differenciate
internal messages, for the sake of clarity in this section, as intra-shard transactions (ISTs) and
cross-shard transactions (CSTs) although ISTs and CSTs share the same structure and follow the
similar execution path in zkSharding.



zkSharding Solution Brief

CONSENSUS SHARD A SHARD B SHARD C
SHARD X ) .
a0: cross-shard transactions destination shard B

SHARD B Later SHARD B : cross-shard transactions destination shard B
BLOCK2 BLOCK2 : new transactions destination shard B
5 b2 c1: cross-shard transactions destination shard B
% c0: cross-shard transactions destination shard B
SHARD B SHARD B
CONSENSUS SHARD B SHARD C SHARD B BLOCK 2 BLOCK 2
BLOCK O BLOCK 1 BLOCK 1 BLOCK 1

b2

\ ORDER

SHARD A SHARD A SHARD C
BLOCK 1 BLOCK 1 BLOCK 1
al O R

Cross-Shard
Shard transaction - -
SHARDA | | SHARDB | | SHARDC Block SHARDA | | SHARDB sHARDC | &
BLOCK 0 BLOCK 0 BLOCK 0 Order ) BLOCK 0 BLOCK 0 BLOCK 0 Transaction - -
e e Earlier mmmm Order

Figure 4: ShardDAG Order

Each internal message contains several fields that help process it robustly, but the key
distinction between ISTs and CSTs lies in two specific fields: the sender contract address S and
the recipient contract address to. To differentiate between shards, we use superscripts to denote
which shard the accounts belong to, e.g., S* and to’ indicate that the sender or recipient account
belongs to execution shard S;. For a given transaction tx = (S% to’), if i = j, meaning both the
sender and recipient belong to the same shard, we classify it as an intra-shard transaction (IST).
If 4 # j, where the sender and recipient belong to different shards, we classify it as a cross-shard
transaction (CST). In short:

e [STs are processed entirely in the execution shard where they are initiated.
e (CSTs involve interaction between different shards and require cross-shard coordination.

Once either an internal or external message arrives to the execution shard, it waits to be
included in a block by a block producer, who connects it to the blockchain, making it a canonical
part of the execution shard. Below, we describe this process in the context of a block producer of
S;.

3.1 Reaching Local Consensus

e Transaction ordering:. The block producer begins by applying the ShardDAG ordering
rules (see Figure 4). For this, it first analyzes the local shardDAG subgraph for shard S;.
This subgraph contains unprocessed transactions {(S7,to’)} where j =i or j # i and their
dependencies across different execution shards. The block producer then determines the
order of these transactions with the help of the subgraph. In case additional block space is
available, it also selects a set of transactions from the mempool. In the end, it obtains the
list of transactions T to be processed. The ShardDAG ordering rules enforce a parent-child
relationship between transactions to be processed in a valid order. Specifically, CSTs with
earlier dependencies must be processed before later transactions. This ordering prevents
inconsistencies in cross-shard interactions.

e Block Creation: The proposer executes all transactions in 7 in the context of the latest
state using the state transition function. If these executions result in new cross-shard
transactions (CSTs), such as (5%, to’) where i # j, the proposer adds them to a special data
structure called the outboxr O;. O; tracks all CSTs originating from §; that are waiting to
be processed by their respective destination shards'.

'If the block capacity is full and the mempool still contains unprocessed messages that should be included
based on the ShardDAG order, they can be added to the block’s outbox for future inclusion in later blocks [?]



zkSharding Solution Brief

After executing the transactions, the block producer creates a block B. We note that if the
execution of some CSTs and ISTs fails, they enter a refund mechanism that allows failed
transactions to be retried with additional fees or canceled via the mailbox. When bulding B,
the block producer respects to the Parent and Main-Parent condtions of ShardDAG rules.
Therefore, it retrieves any new outgoing CSTs from other execution shards and includes the
hashes of the originating blocks in B, thereby linking B to the corresponding blocks from
other execution shards. B includes the list of executed transactions 7, the updated state st,
state root s of st, the outbox O;, which contains CSTs that are yet to be processed by other
shards and block header bh. This newly created block is then proposed to the network as
part of the local consensus process.

e Local Consensus: After receiving the block B, the validators initiate the Multi-Threshold
BFT consensus mechanism [?] to validate and finalize the block locally within execution
shard S;. Each validator verifies the block’s correctness by 2

— verifying the correctness of the transaction order in B to ensure that the order of
transactions adheres to the rules of the shardDAG,

— verifying if the block follows the parent condition and main-parent condition introduced
by ShardDAG rules and,

— checking if F(st’,T) — st where st’ is the last locally finalized state.

Once a supermajority of validators agrees on the block’s validity, the block is finalized
locally. This local consensus ensures that the block is securely added to S;’s chain while
maintaining consistency with the shardDAG ordering rules.

e Block Propogation: After B is finalized locally, validators are responsible for distributing
O; and bh to the destination shards S;, as well as to other shards to ensure data availability
of CSTs. They are incentivized to propagate the data to help reaching global consensus at
the main shard level, as required by the child condition. Remember that execution shards
that receive the CST data link their next block to bh. Even shards that do not process
the CSTs must store the data off-chain, as they may be involved in forming DAG edges or
verifying the ShardDAG rules, which is essential for their own block finality.

Validator sends bh to the main shard after finalizing it locally.

3.2 Reaching the Global Consensus

When the main shard validators receive a block header bh from an execution shard, they perform
the following checks before including bh in a main shard block:

e Local Finality Check: Confirm that bh has been signed by a supermajority of validators,
indicating that it has achieved local finality.

e Validation of ShardDAG Rules: Verify that the Parent Condition, Child Condition,
and Main-Parent Condition are all satisfied.

If all checks pass, bh is included in a main shard block and finalized.

3.3 Reaching the L1 Finality

With the transactions now executed in an execution shard block and included in the main
shard, the next step involves the synchronization committee SC to extract the transaction data,
coordinate with provers to generate proofs, and ultimately submit the verified data to L1 for final
settlement and verification. Here is how SC executes the process:

2The list of checks is not exhaustive. We give the critical ones ensuring the safety and security of cross-shard
communication.



zkSharding Solution Brief

e The observer in SC monitors the growth of the main shard’s state and execution shard
states. Once the state changes reach a certain threshold, the observer initiates the process
of preparing data for L1 submission.

e When the observer signals that a snapshot of data between time 7" (just after the last proven
state) and T + n is ready, the aggregator in SC compiles the data executed between T’
and T + n in all shards into a batch. Each batch of S; consists of transactions 7; executed
between time T and T+ n. In the end, aggregator composes k + 1 bathches where k is the
number of execution shard into one batch B. The aggregator sends B, the last verified state
on L1 st’, and other necessary data to the verifier in SC. It also forwards B to the proposer
in SC. By grouping all transactions into a batch, we achieve better cost-efficiency during
the proving process.

e The verifier generates a special transaction called proof order to outsource the proof
generation process to the prover network. The proof order specifies the batch and state
updates that need to be proven, along with a payment for generating the proof. Prover
network runs the proving algorithm which receives as a private input B, current state st’
and as a public input the new state root s and previous verified state root s’. In simple
terms, provers generate a succinct proof m that verifies the correctness of the new state
with the public inputs (See Section 1.1 to understand the proving statement).

After receiving m, the verifier gives m to the proposer if 7 is verified. The provers joining
the proving process get their fee.

e The Proposer runs the compression algorithm for B which is an optimized algorithm for
zkSharding’s specific data types (e.g., block headers, state roots, and transaction summaries).
This reduces the size of the data submitted to L1. Once the batch is compressed, the
proposer submits it to L1 through an EIP-4844 blob transaction. This transaction includes
the compressed batch data. The blob transaction ensures that the data is permanently
stored and its KZG commitment Comy, is accessible for future verification. Addionally, the
proposer submits 7 and public inputs to the L1 state validity contract and the main shard.

Once the L1 State Validity Contract verifies m as described in Section 1.1, it updates the
verified state root to s and finalizes it as part of L1 through Casper FFG. It means that once
a state is finalized through Casper FFG, it is irreversible and considered as a canonical part of
Ethereum and also zkSharding.

4 Proof Sytem in zkSharding

Our zKEVM |[?]| operates at the bytecode level by directly interpreting EVM bytecode. It
ensures high compatibility with existing Ethereum dApps and smart contracts, although it may
produce slightly different state roots than the standard EVM due to the use of SNARK-friendly
optimizations. Projects like Scroll [?] and Hermez [?| by Polygon also use this method.

In our zkEVM, we use FRI-based placeholder proof system |?| which uses lookup argument |?].
During the implementation of Plookup and its practical use, we encountered some technical issues
that were not mentioned in the original solution. Therefore, we propose practical improvements
[?] for writing large PLONK circuits with a complex logic.

zkSharding’s zkEVM consists of multiple subcircuits , each of which is handled by separate
provers. A straightforward approach would be to have each prover P; generate an independent
FRI-based proof m; for each subcircuit C;, resulting in M proofs (where M is the number of
subcircuits). These proofs would then need to be aggregated into a succinct proof 7. However,
FRI lacks homomorphic properties, making this aggregation process computationally expensive,
which contradicts FRI’s main advantage of prover efficiency.

To address this, we designed Distributed FRI (DFRI) [?]|, which uses FRI batching techniques
to enable efficient proof aggregation across multiple provers. In DFRI, the committed polynomials



zkSharding Solution Brief

from each prover are combined using a collaboratively generated random challenge. This batching
mechanism allows us to aggregate the proofs more efficiently while maintaining the security and
integrity of the proof system. DFRI also ensures accountability by making dishonest behavior
from any prover detectable, which is crucial for maintaining liveness in distributed systems like
zkSharding.

From a performance perspective, DFRI maintains the same proof size as a single FRI proof,
as compared to the straightforward approach which would involve having M proofs without
infeasable aggregation layer. This is achieved through coordination between provers during the
proving process by slightly increasing the communication overhead. Additonally, DFRI does
not extend the overall proving time comparing to the single FRI-based prover. Overall, DFRI
helps retain the efficiency of FRI while enabling secure, distributed proof generation, making it a
critical innovation for zkSharding’s scalability and security.

5 Local Fee Model

In zkSharding, gas price calculation follows a Local Fee Model at the shard level®. Each shard
maintains its own distinct base fee, designed to regulate gas demand and promote balanced load
distribution across the network.

5.1 zkSharding Transaction Fee Mechanism

The zkSharding transaction fee mechanism consists of several key components:

e Shard-Specific Base Fees: Each shard operates with its own independent base fee,
enabling granular control over gas demand and encouraging an even workload across the
network.

e Adjustment Mechanism: The model incorporates a modified EIP-1559 base fee ad-
justment mechanism designed for quicker adjustments during periods of high congestion,
enabling shards to dynamically adapt their base fees to prevailing network conditions. In
addition to faster responsiveness, the mechanism allows greater flexibility around the target
gas usage, aiming to enhance the predictability of cross-shard transactions and transaction
fees when the system is in a balanced state.

e Cross-shard Transaction Premium: A “take it or leave it” premium is applied to
manage congestion in cross-shard transactions (CSTs). This mandatory fee ensures their
viability by incentivizing validators to prioritize CST inclusion and directly rewarding them
for doing so.

e Cross-shard Transaction Base Fee Discount: Cross-shard transactions are charged a
discounted shard base fee to ensure cost efficiency for users. The goal is to align the cost
of CSTs with that of intra-shard transactions, creating a consistent and predictable fee
structure across the network without disproportionately penalizing cross-shard activity.

e Limited Transaction Gas Space: The available gas for transactions within a block is
dynamically adjusted based on the amount of gas used for cross-shard transactions in the
previous block. This design incentivizes validators to prioritize cross-shard transactions, as
doing so increases their potential tip and message premium rewards.

¢ EMA-Based Smoothing: To address volatility in L1 blob base fees, the model uses an
Exponential Moving Average (EMA). This smooths out fee spikes by distributing their
impact over time, preventing sudden cost increases for users.

e Transformation of L1 Fees into Gas: L1 fees, such as those for data availability and
proof verification, are converted into gas units to maintain compatibility with Ethereum’s

3ETH is used as a payment token for =nil;



zkSharding Solution Brief

existing tools and frameworks. These gas units are excluded from the base fee adjustment
mechanism, ensuring a clear separation between L1 fee and L2 fee dynamics.

6 Conclusion

zkSharding presents a robust solution to Ethereum’s scalability challenges by leveraging sharding
and SNARK-based proofs. By dividing the network into execution shards and synchronizing
their state via the main shard, zkSharding ensures efficient, decentralized processing without
fragmenting liquidity. Ethereum serves as the settlement and data availability layer, further
enhancing the system’s security. Through techniques like DFRI and a multi-layer consensus
model, zkSharding achieves a balance between scalability, security, and decentralization, making
it a promising framework for Ethereum’s future.

10



	Overview
	L1 Support in zkSharding

	zkSharding Architecture
	Actors
	Components
	Main Shard:
	Execution Shard


	Transaction Lifecycle: From Execution to L1 Finality
	Reaching Local Consensus
	Reaching the Global Consensus
	Reaching the L1 Finality

	Proof Sytem in zkSharding
	Local Fee Model
	zkSharding Transaction Fee Mechanism

	Conclusion
	Bibliography

