
=nil;’s zkSharding for Ethereum

Ilia Shirobokov

=nil; Foundation
i.shirobokov@nil.foundation

Ilya Marozau

=nil; Foundation
ilya.marozau@nil.foundation

Vitaly Kuznetsov

=nil; Foundation
v.kuznetsov@nil.foundation

April 30, 2024
v0.5

1 Introduction

The distributed ledger ecosystem continues to evolve, bringing about an increase in both the complexity
of decentralized applications and the requirements for system throughput. The most robust solutions,
which have proven their security through years of stable operation, now face the challenge of evolving at
a pace that does not compromise the decentralization inherent in the original protocol. The Ethereum
Network is the main example of these challenges, suffering from network congestion and high transaction
fees. To mitigate these issues, Layer 2 solutions have been introduced. These protocols extend the original
protocol to enhance scalability while inheriting the security of the Layer 1 network.

The current strategy to address the scaling issues leans heavily on the concept of modularity through
rollups and data availability and consensus layers. While this approach has shown promise, existing
solutions introduce significant drawbacks. Rollups are segregated by design, leading to fragmentation in
terms of security, liquidity, and data consistency. Furthermore, the need to redeploy applications from
Ethereum to a Layer 2 solution exacerbates liquidity fragmentation. Additionally, rollups are not scalable
in themselves and require an additional rollup-on-top-of-rollup to achieve scalability.

This document introduces zkSharding, a Layer 2 architecture capable of scaling the Layer 1 network
as needed without causing fragmentation. This is made possible through several key components:

• Parallel execution of transactions across different shards by distinct sets of validators, enabling a
high throughput of up to 60,000 transactions per second;

• Zero Knowledge state transition proofs that secure the system, allowing validator sets to operate
independently on shards and verify other shards in a stateless manner;

• An efficient consensus algorithm that facilitates cross-shard communication, thus reducing transaction
processing times.

As illustrated in Figure 1, the state of zkSharding is partitioned into the Consensus Shard and several
execution shards. The Consensus Shard ’s role is to synchronize and consolidate data from the execution
shards. It uses Ethereum both as its Data Availability Layer and as a verifier for state transition proofs,
similar to zkRollups operations.

Execution shards function as "workers", executing user transactions. These shards maintain unified
liquidity and data through a cross-shard messaging protocol, eliminating any fragmentation amongst them.
Each shard is supervised by a committee of validators. There is a periodic rotation of these validators
across shards. In addition, updates to a shard’s state are verified to the Consensus Shard using VM state
transaction proofs

The zkSharding architecture serves as a foundation for =nil; – a zk-powered Layer 2 solution for
scaling Ethereum.

Section 2 introduces fundamental definitions and the models within which the protocol operates.
Section 3 discusses how individual shards achieve consensus and process transactions within Byzantine
Fault Tolerant (BFT) settings. Section 4 explains the collaboration among shards to ensure global
security guarantees. Section 4.5 explores techniques aimed at reducing transaction processing times in
sharded configurations. Section 5 describes the sequencing of transactions for zkSharding, including how
zkSharding’s Data Availability transactions are ordered on Ethereum. Section 6 delves into the Data
Availability mechanism utilized by zkSharding and provides an overview of Layer-1 finalization. Section 7
examines the state transition proof mechanism employed for dual purposes: Layer-2 state finalization and
the inheritance of security from Layer-1.

1

mailto:i.shirobokov@nil.foundation
mailto:ilya.marozau@nil.foundation
mailto:v.kuznetsov@nil.foundation

=nil;’s zkSharding for Ethereum

Execution Shard Execution Shard Execution Shard...

Consensus Shard

Ethereum

zkVM zkVM zkVM

zkVM

Cross-shard message
passing protocol

Figure 1: zkSharding Architecture

2 Preliminaries

Network Model. The system operates under a partial synchrony model. In this model, after an
unknown Global Stabilization Time (GST), the network achieves synchrony with a known maximum delay
∆. This approach recognizes that synchrony might be temporarily disrupted, potentially due to attacks,
but it is expected to eventually stabilize. A distinction is made between the maximal network delay ∆

post-GST for worst-case scenarios and an actual network delay δ for average or optimistic case scenarios.

Adversary Model. It is assumed that up to f of the shard’s committee members are malicious. Hence,
the committee size n is at least 3f + 1. The adversary can diverge from the specified protocol in any way.

Protocol Properties. A protocol has optimistic responsiveness if in an optimistic case it takes O(δ) to
make a decision. In other words, protocol operates at the speed of the network.

A protocol is considered safe if at all times, for every pair of correct nodes, the output log of one is a
prefix of the other.

A protocol provides liveness if, after GST, all non-faulty nodes repeatedly output growing logs.

Consensus Algorithm Background. A view in consensus protocols refers to a specific configuration
or state of the network. The protocol operates in a sequence of views, where each view has a designated
leader.

The protocol is decomposed into two subprotocols: view-synchronization and in-view operation. The
view-synchronization subprotocol, also called pacemaker, is used by parties to enter a new view and spend
a certain amount of time in the view. The in-view operation subprotocol is used by parties to commit a
block. This decomposition, which is used by HotStuff [1] and its successors, allows us to analyze safety
and liveness properties of the protocol separately.

Proposer-Builder Separation (PBS). This framework divides the role of single validator into two
roles: proposer and builder. Block builders are responsible for constructing the actual contents of a block,
including ordering and veriffication transactions. Block proposers are responsible for proposing (validation
and propogation) new blocks to be added to the network.

2

=nil;’s zkSharding for Ethereum

2.1 Multi-Threshold BFT

It is expected to have in partially synchronous systems more emphasis on safety than liveness: The
system is designed to be safe always, while liveness is guaranteed only after a certain time. Moreover,
both attacks on safety and liveness require committee reformations, but the former also requires a state
reformation. The inconvenience is that popular BFT SMR protocols, such as PBFT [2], Tendermint [3],
and HotStuff [1], have the same threshold for safety and liveness, a third of the committee size. However,
it is possible to decouple the safety and liveness thresholds [4]. This section describes some properties of
the Multi-Threshold BFT protocols.

The analysis of the work of [4] provides a framework to design and update protocols to have optimal
safety a nd liveness thresholds in both partially synchronous and synchronous settings. For the purposes of
this paper, attention is focused on the partially synchronous setting, and a brief summary of the relevant
results are provided.

• In the partially synchronous model there exists a BFT SMR protocol with a safety threshold of
fs ≥ n/3 and a liveness threshold of fl, that must satisfy just the following condition:

fl ≤
n− fs

2
.

• The protocol is based on a Sync HotStuff protocol [5], therefore it has the same 2-vote structure.
There are two main differences:

– Different quorum size, necessary to create a Quorum Certificate, which is equal to n− fl.
– The protocol is not optimistically responsive (however, for a local consensus, where committee

size is not large, it should not become a problem, based on the performance evaluation in [5]).

Remark. By giving up responsiveness, the protocol can become significantly more safe. For example, the
liveness threshold can be set to n/4, while having a safety threshold of n/2, exactly like in the synchronous
setting. This improvement is crucial for the sharding protocol, where shards’ safety threshold should be
strictly greater than the safety threshold of the whole cluster. It is discussed in more detail in Section 4.

3 Intra-shard Replication

An account is a minimal data unit from the sharding algorithm perspective. An account is characterized
by its address (public key) and its associated source code. Notably, there’s no distinction between user
wallets and other applications.

The state of the cluster is split into parts called shards. The shards operate semi-independently,
handling only a portion of the accounts of the zkSharding database.

Each shard is maintained by a subset of validators called committee. The committee is responsible for
the integrity of the shard’s state. Since committee members might be malicious, this situation falls within
the context of the Byzantine Fault Tolerance (BFT) State Machine Replication (SMR) problem. A BFT
SMR protocol for each shard is discussed in this section.

3.1 Shard structure

One of the key properties of the BFT SMR is that the state of the system can be restored from the log of
committed transactions.

Remark. Split and merge conditions also describe a way to split/merge the state of the shard so that the
state can be restored. It is discussed in more detail in Section 4.

A way to achieve this property is to use a blockchain data structure[6] for a shard’s transactions
commit log. The blockchain is a sequence of replication packets (or simply blocks) {Bk}Kk=0 along with a
validity predicate isValid. Here and in subsequent sections, the terms ’block’ and ’replication packet’ are
used interchangeably.

In more detail, following notation from [7], each packet Bk contains a sequence of transactions Tk and
a reference to the previous packet hk−1 := H(Bk−1):

Bk := (Tk, hk−1).

The first packet B0 is called the genesis state and is defined as B0 := (∅,⊥), where ⊥ is a special value.

3

=nil;’s zkSharding for Ethereum

The validity predicate isValid is defined as follows:

isValid(B0) := true,

isValid(Bk) := true ⇐⇒ isValid(Bk−1) ∧ isValidBlock(Bk),

where isValidBlock is a predicate that checks the validity of a block defined on an application level.
Remark. The block (or packet) validity predicate isValidBlock also contains protocol-level checks:

• Message passing check: the block processes all necessary outgoing messages from neighboring shards
• Split/merge conditions check: the block satisfies split/merge conditions
• State consensus check: the block is committed by a designated committee

It is discussed in more detail in Section 4.

3.2 Local consensus

3.2.1 Pacemaker Module

The pacemaker module is a liveness component of the consensus protocol. It ensures that parties eventually
arrive at a view with an honest leader and spend a sufficient amount of time in the view to commit a
replication packet. The problem pacemaker solves is called Byzantine View Synchronization problem and
is thoroughly researched in literature. As mentioned above, the pacemaker module is a bottleneck of the
consensus protocol. Hence, an efficient pacemaker is crucial for the overall performance of the consensus
protocol.

HotStuff-2 uses RareSynch [8] and Lewis-Pye [9] adaptatioin of a pacemaker protocol, which has
theoretically optimal worst case performance, however its average case performance coinsides with the
worst case performance, having O(n2) communication complexity in the average case and O(n∆) latency.
Previously, a simple yet efficient (in average case) pacemaker protocol was proposed in Naor-Keidar [10].
It has constant expected latency O(1), and worst case latency is Ω(n∆), which was already optimal, [11].
However, it improves the communication complexity from O(n2) to O(n) in the average case. Worst-case
complexity is still O(n3), but with randomized leader selection, the probability of cascading leader failure
is small.

Protocol
Latency Message Complexity

Avg Worst Avg Worst
Cogsworth[12] O(1) O(n∆) O(n2) O(n3)

Naor-Keidar[10] O(1) O(n∆) O(n) O(n3)

RareSync/LewisPye[8, 9] O(n) O(n) O(n2) O(n2)

Table 1: Comparison of Pacemaker Protocols

As a part of consensus algorithm, zkSharding employs Naor-Keidar pacemaker protocol, named
Cogsworth [12]. Algorithm 1 provides a high-level description of the simplified version of the protocol.
According to the protocol, a party enters a new view if one of the following conditions is met:

• The replication packet from the previous view was committed.
• A timeout certificate was received.
• A view-change certificate was received.

Algorithm 1: Pacemaker Protocol (Cogsworth)

1 Step Wish:
2 Non-Leader: If there is no progress, send the leader of view r + 1 a message (WISH, r+1).
3 Leader: Collects f + 1 (WISH, r+1) messages and broadcasts an aggregate.
4 Step Ready:
5 Upon receiving WISH aggregate from any leader, it responds with (READY, r+1).
6 Upon timeout, it forwards the WISH aggregate to fallback leaders of views r + 2, . . . , r + f + 1,

one by one, to collect READY responses, until there is progress.
7 Step Advance:
8 Leader: 2f + 1 (READY, r+1) messages and broadcasts a READY aggregate.
9 Non-Leader: Upon receiving a READY aggregate from any leader, it enters view r + 1. Upon

timeout, it forwards the WISH aggregate to fallback leaders of views r + 2, . . . , r + f + 1, one
by one, to collect READY responses, until there is progress.

4

=nil;’s zkSharding for Ethereum

3.2.2 In-View Protocol

An in-view protocol is a protocol that parties execute once they enter the same view and is used to commit
a block. It is a safety component of a consensus protocol.

A quorum certificate (QC) is a proof that a replicaiton packets was signed by a quorum (2/3 of the
committee) of validators. In one view v, there can be at most one QC for a packet Bk, denoted as Cv(Bk),
and at most one QC for a block QC from the same view, denoted as Cv(Cv(Bk)).

Here, a basic (not pipelined) version of the in-view protocol proposed in [7] is described. Pipelining is
a technique to amortize the number of rounds required to commit a block. In a steady state, the protocol
has two vote phases. A high-level description of the protocol, after honest nodes enter the same view v, is
given in Algorithm 2.

Algorithm 2: In-View Protocol (view v, height k)

1 Step Enter :
2 if in view v − 1 a block Bk−1 was committed then
3 Leader: Go to Propose step.
4 Non-leader: Go to Vote 1 step.
5 else
6 Leader: Wait for ∆ time, then go to Propose step.
7 Non-leader: Send lockedValue to the leader, then go to Vote 1 step.
8 Step Propose:
9 Leader proposes a block Bk and broadcasts propose(v,Bk) to all nodes.

// Bk is either a locked block with the highest view among all lockedValue
messages, or a new block created by the leader.

10 Step Vote 1 :
11 Upon receiving propose:
12 if isSafe(Bk) = true then
13 Vote for Bk by threshold signing vote(v, hk), where hk = H(Bk), and send it to the leader.
14 Step Prepare:
15 Leader aggregates 2f + 1 votes into a QC Cv(Bk) and broadcasts prepare(v, Cv(Bk)).
16 Step Vote 2 :
17 Upon receiving prepare:
18 Vote for Cv(Bk) by threshold signing vote(v, Cv(Bk)), and send it to the leader.
19 lockedView := v

20 lockedValue := (Bk, Cv(Bk))

21 Step Commit:
22 Leader aggregates 2f + 1 votes into a QC Cv(Cv(Bk)) and broadcasts commit(v, Cv(Cv(Bk))).
23

24 Function isSafe(Bk):
25 if isValidBlock(Bk) ∧ lockedView < v then
26 return true
27 return false

4 Global Sharding Protocol

Consensus Shard. The first shard, known as the Consensus Shard, holds essential data about the
protocol’s consensus and its current parameters. It also contains information about other shards and the
hashes of the most recent replication packets from all shards. In essence, the Consensus Shard serves a
dual purpose:

• It sets the protocol’s rules and parameters.
• It ensures synchronization across all other shards, including verifying state transition proofs from

these shards.

Execution Shards. Execution shards are responsible for processing user transactions. Each shard
manages a subset of tables (accounts), defined by the deterministic function

FS : (pk,Mshards) → idshard

5

=nil;’s zkSharding for Ethereum

In this context, pk represents the account’s public key, while Mshards refers to the history and metadata
of shards stored in the Consensus Shard.

Each shard is maintained by a specific group of validators (committee). These validators run a "local"
consensus algorithm to ensure the shard’s state consistency. Details about the shard’s local consistency
are provided in Section 3.

In accordance with the parameters outlined in the Consensus Shard, each shard has a maximum block
capacity. The dynamic sharding behavior is influenced by two events:

• Split Conditions are met : If, during the previous N replication cycles, a shard’s block occupancy
approaches its capacity, the shard is split into two. The exact values of N and the fullness threshold
are defined by the protocol’s parameters.

• Merge Conditions are met : Conversely, if during the last N replication cycles, the replication packet
occupancy of two shards remains substantially below capacity (with at least half the block remaining
vacant), then a merge of the two shards is initiated.

4.1 Validators Rotation Procedure

At the end of each epoch, the whole validator set generates a new seed for the next epoch using a Verifiable
Secret Sharing (VSS) scheme [13, 14]. The seed is used by the validators to generate a new committee for
each shard.

assignment : shardIds → 2validators

The exact mechanism of assignment update:

1. For each shardId, an array of the following values is sorted

PRFseed(shardId||validatorId)

2. The validators corresponding to the first n values are used to form a new committee for the shard.

One could rotate leaders in a round-robin fashion, leader_id = view mod n, but this would be
vulnerable to DoS attacks, since an adversary easily can obtain the leader schedule. A leader election
protocol based on Verifiable Random Functions (VRFs), as proposed in [15], is utilized:

seed = VRFprev_leader(height, view)

leader_id = PRFseed(view) mod n

where PRF is a pseudorandom function. The leader of the previous view provides the seed as a result of
evaluating the VRF. Every node can verify that the seed is correct by evaluating the VRF with the public
key of the previous leader.

4.2 Cross-Shard Communication

As previously highlighted, all accounts are distributed among shards. At an initial glance, this might seem
similar to the data fragmentation issue found in the application-specific rollups approach. However, the
key difference is in how cross-shard communication is handled: it’s integrated directly into the overall
protocol, rather than being managed by separate bridges.

Each committee has additional tasks beyond just maintaining their shard. They are responsible for
tracking a specific type of events, namely cross-shard messages, within near shards. Near shards are
determined based on the Hamming distance in shard identifiers.

More specifically, block is considered to be valid if it propogates all necessary messages. Each outgoing
message has a destShard field, which uniquely determines nextShart identifier:

nextShard = NextHop(destShard, shardId)

If nextShard is equal to the current shard, then the message is considered to be necessary, and block
proposer must include it into the block along with a merkle proof of inclusion to the set of outgoing
messages of the neighboring shard. Validation of the included messages is a part of isValidBlock function
mentioned in Section 3.1.

6

=nil;’s zkSharding for Ethereum

4.3 Global Replication Protocol

The safety of the system is limited by the safety of the weakest shard committee. To address this concern,
sharded protocols enhance the sizes of shard committees, thereby achieving acceptable safety guarantees
[14, 16]. A similar strategy is employed in zkSharding concept, ensuring that full sharding (encompassing
storage, communication, and computation) is not compromised. That is, within one epoch, validators
need to store, process, and communicate with only a small part, approximately (logN)R

N fraction of the
whole system.

As previously stated, the set of shard identifiers shardIds incorporates a metric, the Hamming distance
dist. The metric structure of this set is utilized to define a shard’s committee: it comprises all validators
assigned to the neighborhood of the shard.

committee(shardId) =
⋃

s∈shardIds
dist(s,shardId)≤R

assignment(s),

Where R ≥ 0 serves as a protocol parameter that determines the neighborhood’s size, the exact value
of R is not specified; however, it is selected to ensure the committee size is sufficiently large to afford
acceptable safety guarantees. A standard methodology is employed to estimate the probability of a 1%
attack, as detailed in Appendix A.

Remark. By forming committees in this local manner, compatibility between the consensus protocol and
the message routing protocol (see Section 4.2) is achieved. Validators of neighboring shards, tasked with
tracking cross-shard messages, must retrieve necessary messages from these neighboring shards. Thus,
including them in the consensus committees of neighboring shards addresses the data availability issue.

The safety analysis, as detailed in A.1, indicates that the probability of a safety attack is non-negligible
if the safety threshold for a shard is set equal to the safety threshold of the entire system. To address
this issue, other widely recognized protocols [16, 14] either lower the safety threshold of the entire system
or transition to a synchronous network model. A different solution is proposed here: the adoption of
the Multi-Threshold BFT [4] consensus protocol, as described in 2.1, which serves to elevate the safety
threshold of the shard. The safety threshold, essentially governed by the quorum size, also functions as a
safety parameter within the consensus protocol.

Additionally, the zkSharding protocol relies on state transaction proofs (see Section 7) to enable all
validators in the system to verify the state of each shard in a stateless manner. However, state transition
proofs take time to generate, and standard consensus mechanisms above are used to provide the best
security guarantees in the meantime, before the state transition proof is generated.

Therefore, global consensus protocol is a two-level protocol:

• Local consensus protocol is a Multi-Threshold BFT consensus protocol, variation of a Sync
HotStuf, run by a committee of a shard.

• Global consensus protocol is a HotStuff-2 consensus protocol run by the whole validator set.

After running the local consensus protocol, each committee leader proposes a block digest along with
a quorum certificate to the Consensus Shard’s leader. The Consensus Shard’s leader collects all block
digests and quorum certificates and proposes a block to the Consensus Shard’s committee (whole validator
set). The Consensus Shard’s committee runs a consensus protocol to finalize shards’ latest states.

As mentioned, the probability of a safety attack is adjusted by the protocol’s safety parameters and is
set to be sufficiently low. However, if the attack still happens, the state of the corrupted accounts is rolled
back to the last known good state; for details, see 4.4. Attack detection is facilitated through finalization
via state transition proofs, which, once generated, are submitted to the Consensus Shard. If the proof is
not valid or the Consensus Shard doesn’t receive a state transition proof in a predetermined amount of
time (fixed number of successful consensus rounds in the Consensus Shard), the committee size of the
shard is increased, by increasing the neighborhood size R. The consensus protocol is then rerun with the
new committee size.

4.4 Fixing Errors

The protocol outlines the following stages for state change finalization:

• Local consensus is achieved.
• The latest state of the execution shard is provided to the Consensus Shard.

7

=nil;’s zkSharding for Ethereum

• The state transition proof of the execution shard is submitted to the Consensus Shard.
• The state transition proof for the zkSharding protocol is submitted to Layer 1. Further details on

state transition proofs are discussed in Section 7.

Despite the introduction of mechanisms such as the two-level consensus protocol (Section 4.3), Multi-
Threshold BFT (Section 2.1), and shard committees determined by neighborhood size (Section 4.3), there
remains a slight chance for malicious nodes to gain control over one of the execution shards. This can
occur before state transition proofs are submitted to the Consensus Shard, i.e., within minutes of real
time. To address the potential consequences of such attacks, a rollback mechanism has been integrated
into zkSharding.

Rollbacks introduce additional complexity to the protocol and incur a large communication overhead.
However, the expected overhead is negligible due to the low probability of a safety attack. The protocol
follows the following steps before triggering a rollback:

1. As was mentioned, the shard’s state finalization cannot be completed, the corresponding committee
size is temporarily increased, and the consensus protocol is rerun on an unsafe state change.

2. If an attack is detected:

2.1 Malicious validators who signed an invalid block are slashed.

2.2 Since the safety of the system is attacked, then the whole validator committee must correct the
errors via state rollback.

Regarding the rollback:

• The most straightforward and robust possibility is to roll back the system to the last known verified
state. This solution, however, does not consider the fact that most of the accounts are not affected
by the attack, making redundant the rollback of their states.

• A more sophisticated approach is to roll back only the affected accounts. The problem with this
approach is that the error propagation speed is higher than the speed of state transition proofs
generation, A big part of the system has to regenerate the latest state transition proofs. This
approach is more complex but suffers from the same problem as the first one.

4.5 Co-location

Cross-shard communication could extend the processing time of applications located on different shards.
For scenarios demanding the swiftest possible transaction processing (i.e. increased consistency), the
protocol incorporates a co-location technique. 1

Co-location ensures that two accounts {pk1, pk2} are consistently located within the same shard. In
other words, FS(pk1,Mshards) = FS(pk2,Mshards) for every possible value of Mshards.

The relationship of co-location between addresses A and B is represented as A ∩B. The property of
transitivity is inherent in the co-location relation, such that if A ∩B and B ∩ C, it logically follows that
A ∩ C.

Scalability Concerns. Co-location creates an opportunity for concentrating applications on one shard,
potentially undermining the sharding concept. From the perspective of the common good, this approach
is counterproductive. However, for individual actors, co-locating applications with those that are most
used may seem advantageous.

To mitigate this, limitations on co-location are proposed. In essence, an address is permitted to be
co-located with at most N other addresses, subject to economic constraints that may influence the actual
number of feasible co-locations.

Define the co-location depth of an address A, denoted as |SA|, to be the cardinality of the set
encompassing all addresses co-located with A. Formally, |SA| = |

⋃
S | S ∩A|.

Limitations are split into two parts:

• Economic restrictions. The cost of each co-location depends on the resulting co-location depth of
the address.

1Obviously, enhancing shard performance leads to improved cross-shard performance, but it cannot enable transaction
processing within the timings of one replication packet.

8

=nil;’s zkSharding for Ethereum

• Ownership or domain restriction. Only addresses controlled by the same key (potentially a multi-sig
key) may be co-located.

Domain restrictions are introduced to prevent attacks on popular applications by malicious users
co-locating their addresses with a popular one, thereby preventing the addition of new modules by
developers.

4.5.1 Economic Restrictions

To initialize a previously unmentioned address, it is necessary to send an initialization transaction to this
address, containing initial code, initialization values, and a fee.

The basic address deployment cost is defined as the sum of the following parameters:

• Basic transaction fee
• Address activation cost
• Application bytecode size
• Constructor call cost
• Reserved data size by the application
• Initial values costs (as part of transaction additional data)

The co-location’s economic restrictions form part of the address creation costs. These costs for address
A are defined by the following formula:

address_creation_fee = b · k|MA|,

where b represents the basic address creation cost, and k is the co-location multiplier. Both parameters
are set in the configuration and can be updated by governance.

Economic restrictions are applied during the operation of account creation, i.e., when a user activates
the account with a transaction for the first time. Typically, this transaction includes funding and initial
values.

4.5.2 Ownership Restrictions

The requirement to bind addresses in some manner introduces ownership restrictions. These can be
implemented in two ways:

• Binding solely through an explicit map of co-located addresses.
• A functional definition of co-located addresses entails the ability to derive one address from another.

This is possible given that addresses are public keys of some digital signature scheme, which allows
for such derivation.

In general, it is not feasible to define a "master" key from a derived key. Therefore, an explicit map of
bindings must be stored in any case. Furthermore, cryptographic derivation does not add security because
forging the map of co-located addresses would require compromising the protocol itself. Thus, the explicit
map of the co-located addresses is solely utilized.

The concept of a domain is introduced. A domain is a set of co-located addresses defined by the
master key.

Binding Map. An explicit map can be implemented via an application on top of the consensus shard,
termed a co-location manager. Since each validator is required to track the consensus shard, access to this
map is always available.

In this scenario, the overall address creation costs become:

address_creation_fee = b · k|MA| + e,

where e is the execution cost of the co-location manager.
Co-location manager contains the following operations:

class CoLocationManager {
// Data structure to store co-location domains
domains: map[address -> array[address]];

// Function to attempt co-locating two addresses

9

=nil;’s zkSharding for Ethereum

co-locate: function(pair<address, address>) -> bool {
// Checks and updates domains to include the co-location if possible
// Returns true if co-location is successful, false otherwise

};

// Function to release the co-location relationship between two addresses
release: function(pair<address, address>) -> bool {

// Updates domains to remove the co-location relationship
// Returns true if the operation is successful, false otherwise

};

// Function to check if two addresses are co-located
is_co_located: function(pair<address, address>) -> bool {

// Returns true if the addresses are in the same co-location group, false otherwise
};

// Function to calculate the fee for address creation or co-location based on co-location depth
calculate_fee: function(address) -> number {

// Calculates and returns the fee based on the co-location depth of the address
};

// Function to retrieve the co-location group for a given address
get_co_location_group: function(address) -> array[address] {

// Returns the array of addresses that are co-located with the given address
};

}

Validators of the shard are tasked with tracking the co-location manager and processing accounts
related to the shard.

Additionally, co-location enables the emulation of a synchronous mode for contract execution. This
means that original Ethereum applications can be redeployed and run on top of =nil; without needing to
be updated for the asynchronous execution environment of the sharded system. However, this functionality
is a feature of the =nil; product and not inherent to the zkSharding architecture, so its details are beyond
the scope of this document.

5 Sequencing

Utilizing the PBS model, a network of distinct builders and searchers emerges, engaging in competition to
construct the most lucrative blocks that outbid others in the Realyer auction. L2 transactions adhere to a
structure fully compatible with Ethereum, offering the potential to harness the capabilities of L1 builders
and searchers. This approach enhances protocol stability and liveness while maintaining sovereignty. Refer
to Figure 2 for an illustration of the high-level schema.

5.1 Shards’ sequencing

While each shard manages its own mempool of transactions, there are no restrictions on access for any
network members. PBS participants have the autonomy to decide which shard to collaborate with. The
associated risks that builders might choose to exclusively handle shards with high-gain applications (e.g.,
DeFi) are not significant. Several reasons substantiate the market stability of this model:

• When numerous searchers and builders view to propose a single block to a relayer on a shard, the
likelihood of placing the highest bid with equivalent efficiency is directly proportional to the number
of effective builders. The expected gain can be expressed as E(G) = 1/n · p, where n represents the
number of effective builders and p is the expected gain. In the secondary shard with a lower gain,
denoted as k, where the competition is less intense, the expected gain could surpass that of the
Consensus Shard in the case of smaller competition, i.e., E(Gk) > E(Gn), where n < p/k.
On the other side, gas prices rise for underloaded shards, and the gain k will increase over time if
the block construction is delayed due to the inactivity of builders;

10

=nil;’s zkSharding for Ethereum

L2 network

L1 network Mempool

Mempool Searcher

Builder

Searcher

Builder

Bundle

Bundle

Relayer

L2 block

L2 block

L2 transactions
accessible to L1

Proposer

Shared Sequencer NetworkProposer

Figure 2: Sequencing model

• A merge occurs when high gas prices result from the inactivity of builders.

Following the principle of PBS and a separated mempool, the possibility arises to utilize independent
sequencers tailored to specific needs. The integration and utilization are seamlessly designed, allowing
validators to choose such a system over independent builders to enhance specific aspects of the shard.
For instance, reducing MEV on a shard with a highly liquid decentralized exchange could potentially
significantly decrease slippage, although not mandatory, but likely increasing transaction costs. An
example of this integration is illustrated in Figure 2 (dotted line).

Remark. Split and merge events can represent a significant shift for builders and searchers. Any changes
to the entire network, including the involved members, will be communicated through the Consensus
Shard. In practice, without maintaining a long queue of pre-prepared blocks, the merge event will not
introduce significant changes to the constructed builder’s blocks (e.g., shardID). Relayers will need to
reapprove signatures in the new committee after the event to continue delivering blocks to the proposers.

5.2 Consensus Shard

The Consensus Shard distinguishes itself from others with its essential requirements of speed and liveness.
However, a set of associated risks has emerged along with the reasons for their association:

• No potential MEV issues, due to specifics of the transactions.
• No market competition for gas prices due to exclusivity.
• With few shards quite a lot of unutilized block gas.

This requires an approach where proposers both construct and verify blocks, eliminating the need for
a separate role. Instead, a committee will oversee the construction process, and transaction costs will be
covered by the protocol fee. The estimation of gas prices for the Consensus Shard is derived from the
market price.

6 Data Availability

The Data Availability (DA) layer for L2 solutions outlines the method for storing information essential to
recover L2 data in emergency situations.

11

=nil;’s zkSharding for Ethereum

6.1 Synchronization on L1

To facilitate L2 data availability on the L1 network, the Synchronization Committee is introduced. They
ensure data availability on Ethereum for the entire zkSharding solution.

Synchronization Committee participants hold a distinct role in zkSharding. The committee is formed
by validators who opt for this additional role. The committee operates in epochs defined by the protocol
parameters, with a new committee elected each epoch. An account cannot be an active validator and a
member of the Synchronization Committee simultaneously; this separation is enforced by the committee
election algorithm. Therefore, although committee members use the same stake, these funds are eligible
for slashing for only one role at any given time.

Following a period of time defined by the protocol parameters, the committee generates a state
difference for the shard between time T and T + p. The protocol is operated via application on top of
the Consensus Shard. A selected node proposes the hash of the state difference and the Synchronization
Committee votes on it. Upon achieving 2

3 + 1 votes, the state difference, its hash, and the aggregated
signature are composed into an Ethereum data availability transaction. In case of achieving 1

3 votes
"against" the proposed difference, the leader is slashed.

If multiple Ethereum transactions are prepared, the committee may decide to compose them into an
L1 block. This enables participation in Relayer auctions and achieves soft finality faster by including
the block in the nearest current epoch slot (Figure 3). Alternatively, in case of too few Ethereum DA or
state-proof transactions, they can be sent directly to the builders/searchers (as bundle or transaction).

ShardL2 Network

L1 Network

Sync
CommitteeState Diffs

Searcher Builder Relayer

Slot 1 Slot 2 Slot 31...

Ethereum BlockEthereum TX

Soft Finalization

Figure 3: Synchronization on L1

6.2 Consensus Shard

The Consensus Shard periodically submits its snapshot to Layer 1 (L1) in the form of the state differentials.
These state differentials represent the modified segments of the global state resulting from the application
of L2 transactions to the previous state. The purpose of these differentials is to aid in reconstructing a
complete L2 state by integrating sequential historical changes in case of rollback events.

Given that the Consensus Shard is responsible for storing and synchronizing the latest state roots
committed by execution shards, the transactions it handles are highly specific and persistent in their
computations and storage usage.

6.2.1 Finalization

Probabilistic (soft) finalization is attainable due to the high reliability of Ethereum validators. The
achievement of probabilistic finalization happens when the Consensus Shard’s data availability transaction
is verified in the L1 slot.

On the other hand, hard finalization is only accomplished after the verification process. The state
change proof, coupled with fully finalized state differences, is necessary for the finalization of Layer 2
defined as follows:

12

=nil;’s zkSharding for Ethereum

Finalizationt =

{
true, if Vzk(prooft) ∧ Vdiff (Difft), where : V − verificationfunction

false, otherwise

}

6.2.2 Data organization and store

Data on L1 is stored in a specifically deployed contract, tasked with accepting L2 state differences,
verifying signatures, and persistently storing the data on the chain. Each submitted L2 Consensus Shard
state difference is stored in Ethereum calldata while metadata on storage as a sequential chain, and the
structure appears as mapping:

head: hash32;
mapping (hash32 => struct) {

signature : hash32,
da_hash : hash32,
period : uint32 (>= 1),
prev_da : hash32,
zk_proof_hash : hash32,
zk_verification_passed : bool

}

State transition proof and state differential hashes will serve as the means for navigating the data
stored in calldata. The verification status can only be set after the successful validation of the state
transition proof. The term "period" refers to the number of blocks that are consolidated. Since this
number is not fixed and is defined by the protocol parameters, it must be explicitly stored.

6.2.3 Transactions cost impact

The primary content in the data availability transaction submitted to L1 consists of the state roots
submissions from execution shards to the Consensus Shard. As mentioned earlier, the influence of
transactions on Consensus Shard storage remains relatively constrained. Although the fundamental idea of
sharding revolves around limitless horizontal scaling, the calculations are presently centered on achieving
the current target of 60,000 transactions per second (TPS) with 400 execution shards.

Execution shards submit relatively lightweight transactions to the Consensus Shard, primarily focused
on submitting the latest state root after each new block. Simultaneously, the Consensus Shard is expected
to submit data availability during intervals measured in blocks an interval adjustable by the protocol
parameters. GPT For the calculations, a value equal to half of the Ethereum slot time, which is 6 seconds,
was chosen. The system produces one block per second.

Every execution shard transaction will result in a change to its account nonce value (32 bytes), balance
(32 bytes), and storage (32 bytes state root hash). It’s worth noting that the Merkle State Trie path, in
this case, is considered to have an average depth of 3. The probability of choosing two identical 3-byte
prefixes for 400 keys is approximately 0.475%, which can be safely accepted as the worst case.

size = shards · (nonce+ storage+ balance+ merkle_path) = 400 · 32 · 6 = 76800 bytes

The total data size, excluding metadata, is 76.8 kilobytes. The metadata and aggregated committee
signatures are relatively small and can be disregarded.

Given the high entropy nature of the data, the ratio of zeros to non-zeros in the data packet is
approximately 1

256 . This results in:

Gaszero =
1

256
· 76800 · 4(gas_cost) = 1200

Gasnon−zero =
255

256
· 76800 · 16(gas_cost) = 1224000

Gastotal = Gaszero +Gasnon−zero = 1225200

At the current ETH cost of $2900 and a gas price of 15 gwei, the approximate cost of the Data
Availability transaction is $53.2962.

13

=nil;’s zkSharding for Ethereum

It is important to note that this calculation does not account for the diffs period. The rationale behind
this omission is that the commitments size of the diffs remains consistent, given that the changes involve
the same accounts.

It is important to note that this calculation does not account for the state diffs period. The rationale
behind this omission is that the commitment size of the diffs remains consistent, given that the changes
involve the same accounts.

However, the estimated additional cost fee for L2 transactions related to DA can be calculated as
1225200/(6 · 60000) = 3.403 gas or $0.00014 per user transaction. In comparison, it will be 6 times higher
($0.00084) in the case of submission each main submission. It’s crucial to acknowledge that increasing
the period for state diffs may compromise stability, particularly in the event of a Consensus Shard revert
where the entire state diff period must be reverted across all shards.

6.3 Execution Shards

The paper does not outline specific requirements for data availability in the execution shards. Nevertheless,
it is recommended to bolster the shard’s security by storing snapshots on a reliable off-chain solution.
For instance, each execution shard can autonomously merge state differences over a designated period,
compress the data, and then submit it to the Ethereum network (as "calldata" or by EIP-4844) or a
dedicated Data Availability layer solution.

6.3.1 Continuous state difference merge (CSDM)

EIP-4844 introduces substantial improvements for all L2 solutions on the Ethereum network. To harness
the full capabilities of this new standard and unlock significant cost reduction potential for zkSharding,
the CSDM mechanism is introduced to enhance data availability for execution shards.

In alignment with the Ethereum philosophy of verification, this data availability mechanism also
incorporates complete persistence of the shard’s state on temporary storage.

The process is divided into three parts: initialization, state difference saving, and merge. During the
initialization stage, execution shards store the full state in a blob at time T for a duration of n periods.
Subsequently, at regular intervals of time p (blocks), the execution shard saves the state difference, D,
between T + pk and T + p(k+1). The merge operation takes place at time T +n when the shard executes
the following operation:

ST+n = Ŷ (...(Ŷ (Ŷ (ST , DT+p), DT+2∗p)..., DT+n),

where Ŷ is the state merge function defined as ST+k = Ŷ (ST , DT+k).
The rationale behind the mechanism can be substantiated by examining the evidence of saving state

differences during the time. Suppose there is a throughput of 60,000 TPS, 256 million unique accounts
(statistics from Ethereum), 1 second block generation time (1 BPS, blocks per second).

Given the BPS and TPS figures, it is asserted that the minimum number of changed accounts will be
at least 60,000, since only externally owned accounts (EOA) can create transactions.

In each new block, the distribution of unique accounts (transactions) follows a normal (Gaussian)
distribution as a natural process. If updates occur every 90 days, the total number of changes will be
seconds ∗ TPS = 466560000000. Utilizing a generally calculated standard deviation, the probability of
changing all 256 million accounts is very high (94.51%), and the probability of changing 90% is even
higher (99.93%). This renders it entirely reasonable to fully update and resave the state, as the changes
during this time effectively create an entirely new state.

7 State Transition Proofs

A state transition proof is a cryptographic construct that validates a state transition from Si to Si+1 due
to one or more transactions, without the need to rerun these transactions.

The formal representation of a state transition proof can be defined as a function F :

F(Si, T, Si+1, P I) → (π) (1)

where:

• Si is the state before the transactions.
• T represents the transaction or batch of transactions.

14

=nil;’s zkSharding for Ethereum

• Si+1 is the state resulting from applying the transactions.
• PI = [CT , CSi , CSi+1] is a public input with a succinct representation of Si, Si+1, and T .
• π is the zero-knowledge proof verifying the correctness of the transition from Si to Si+1 without

knowing T .

This proof π is subsequently verified by a verifier function V:

V(PI, π) → {true, if the transition is valid; false, otherwise}
These definitions can be applied both to the zkSharding whole system and to particular shards. In

the first case, Si represents the "world" state of zkSharding and includes whole sharded database. In the
second case, Si represents the state of the particular shard. However, a more precise definition of F for
zkSharding’s world state can be provided. For k shards, the state transition proof’s formal representation
is as follows:

F(S0
i , . . . , S

k−1
i , S0

i+1, . . . , S
k−1
i+1 , T

0, . . . , T k−1, P I0, . . . , P Ik−1) → (π) (2)

There are two issues that prevent the implementation of state transition proof generation by a single
validator node:

• State transition proofs are computationally intensive tasks that take time. The larger the state
change, the more time it takes.

• To provide a proof for the whole zkSharding state, the prover must obtain the state of the entire
sharded system.

For these reasons, the function F is implemented as a multi-party protocol. Participants of the protocol
are called proof producers.

7.1 Proof Generation Protocol

Define three types of proofs for the protocol:

• πS is a state transition proof defined by Equation 1.
• πA is an aggregation proof that aggregates two state transition or aggregation proofs:

FA(π1, π2) → πA

• πO is an output proof defined by the function:

FO(πA,1, πA,2) → πO

The output proof is required for cases when proof verification costs on the execution layer depend
on the proof system parameters. For example, KZG-based proofs verification is generally cheaper than
FRI-based ones on the Ethereum Virtual Machine. Note that FO is required only for cost optimizations
and may be represented as FA for the simplicity of implementation.

Now, equation 1 can be represented as:

F = FO

(
F log k−1

A (FA(FS(. . .)),FA(FS(. . .))) ,F log k−1
A (FA(FS(. . .)),FA(FS(. . .)))

)
,

The Proof Distribution Protocol (or PDP) is responsible for assigning proof producers to particular
slots. A slot is a task for generating one specific proof with defined input. Separating the proof aggregation
algorithm from the proof producer assignment logic allows for independent updates of both algorithms.
Remark. Step 4 of Algorithm 4 can start as soon as at least two proofs are generated at Step 3. For
clarity, this is omitted in the algorithm description.

7.1.1 Global State Transition Proof

Note that Equation 2 can be represented as:

F(S0
i , S

0
i+1, T , PI),

where 0 is the sequence number of the Consensus Shard, and T , PI contain data about transactions
that call the verification function V(PIi, πi) for i ∈ [1, k].

In other words, the global state transition proof can be obtained from the Consensus Shard’s state
transition proof, with state differences that include verification of other shards’ state transition proofs.
Thus, the algorithm is as follows:

15

=nil;’s zkSharding for Ethereum

Algorithm 3: Proof Distribution Protocol: Slots Assignment

1. An event occurs: a new block is sent to the Consensus Shard.

2. A part of the block reward is locked as a reward for proof producers. The part is calculated as the
sum of rewards for each slot related to the block, with slot rewards defined by adjustable protocol
parameters.

3. PDP defines the list of open slots, each defined as follows:

slot_id: uint
shard_id: uint
block_seq_no: uint
batch_seq_no: uint
proof_type: enum
max_fee: float

4. Proof producers provide proofs for the slots, requesting any fee lower or equal to max_fee. While
multiple proof producers can provide the proof for the same slot, only the proof with the lowest fee
is chosen.

5. The rewards are paid to proof producers according to the requested fee.

Algorithm 4: Proof Distribution Protocol: Intra-shard State Transition

1. Validators confirm the block B that contains a set of transactions T .

2. Based on the protocol parameters, T is split into k batches [T0, . . . , Tk−1].

3. PDP opens k slots for πS proofs for the given batches.

4. PDP consequently opens k − 1 slots for πA to aggregate the k πS proofs into two proofs as a binary
tree.

5. PDP opens 1 slot for πO proof.

16

=nil;’s zkSharding for Ethereum

1. Proof producers generate πi
O for each execution shard.

2. Validators send πi
O proofs to the Consensus Shard.

3. The Consensus Shard verifies the proofs.

4. Proof producers generate πO for the Consensus Shard.

Later, the global state transition proof is transferred to Layer 1 by the Synchronization Committee as
described in Section 6.1.

References

[1] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff: Bft consensus in the lens
of blockchain,” 2019.

[2] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in 3rd Symposium on Operating
Systems Design and Implementation (OSDI 99), (New Orleans, LA), USENIX Association, Feb. 1999.

[3] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of blockchains,” 2016.

[4] A. Momose and L. Ren, “Multi-threshold byzantine fault tolerance,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’21, (New York, NY, USA),
p. 1686–1699, Association for Computing Machinery, 2021.

[5] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin, “Sync hotstuff: Simple and practical
synchronous state machine replication,” in 2020 IEEE Symposium on Security and Privacy (SP),
pp. 106–118, 2020.

[6] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized business review, 2008.

[7] D. Malkhi and K. Nayak, “Extended abstract: Hotstuff-2: Optimal two-phase responsive bft.”
Cryptology ePrint Archive, Paper 2023/397, 2023. https://eprint.iacr.org/2023/397.

[8] P. Civit, M. A. Dzulfikar, S. Gilbert, V. Gramoli, R. Guerraoui, J. Komatovic, and M. Vidigueira,
“Byzantine consensus is θ(n2): The dolev-reischuk bound is tight even in partial synchrony! [extended
version],” 2022.

[9] A. Lewis-Pye, “Quadratic worst-case message complexity for state machine replication in the partial
synchrony model,” 2022.

[10] O. Naor and I. Keidar, “Expected linear round synchronization: The missing link for linear byzantine
smr,” 2020.

[11] M. K. Aguilera and S. Toueg, “A simple bivalency proof that t-resilient consensus requires t+1 rounds,”
Information Processing Letters, vol. 71, no. 3, pp. 155–158, 1999.

[12] O. Naor, M. Baudet, D. Malkhi, and A. Spiegelman, “Cogsworth: Byzantine view synchronization,”
2020.

[13] P. Feldman, “A practical scheme for non-interactive verifiable secret sharing,” in 28th Annual
Symposium on Foundations of Computer Science (sfcs 1987), pp. 427–438, 1987.

[14] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via full sharding,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS
’18, (New York, NY, USA), p. 931–948, Association for Computing Machinery, 2018.

[15] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li, D. Malki, O. Naor, D. Perelman,
and A. Sonnino, “State machine replication in the libra blockchain,” 2019.

[16] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Omniledger: A secure,
scale-out, decentralized ledger via sharding,” in 2018 IEEE Symposium on Security and Privacy (SP),
pp. 583–598, 2018.

17

https://eprint.iacr.org/2023/397

=nil;’s zkSharding for Ethereum

A Protocol Security Proof

A.1 Committee Selection Security

Assuming that validator assignment is random and nonintersecting, the probability of a single shard safety
is given by a simple combinatorial argument:

plocal_fail := P (X ≥ ⌊m · f⌋) =
m∑

x=⌊m·f⌋

(
t
x

)(
n−t
m−x

)(
n
m

)
where we have used the following notation:

• n – total nodes
• F – safety threshold fraction in the network
• t = n · F – total faulty nodes
• m – shard size
• f – safety threshold fraction on a shard
• X – number of faulty nodes in a shard

It can be shown that if F ≥ f , then plocal_fail ≥ 1/2. Therefore there is an inherent need to set safety
thresholds on main shard and local shards differently.

18

	Introduction
	Preliminaries
	Multi-Threshold BFT

	Intra-shard Replication
	Shard structure
	Local consensus
	Pacemaker Module
	In-View Protocol

	Global Sharding Protocol
	Validators Rotation Procedure
	Cross-Shard Communication
	Global Replication Protocol
	Fixing Errors
	Co-location
	Economic Restrictions
	Ownership Restrictions

	Sequencing
	Shards' sequencing
	Consensus Shard

	Data Availability
	Synchronization on L1
	Consensus Shard
	Finalization
	Data organization and store
	Transactions cost impact

	Execution Shards
	Continuous state difference merge (CSDM)

	State Transition Proofs
	Proof Generation Protocol
	Global State Transition Proof

	Bibliography
	Protocol Security Proof
	Committee Selection Security

