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Abstract

zkEVMs has proven themselves to be a worthwile way to prove a more consistent (than Ethereum)
database’s state transitions to Ethereum to avoid bringing its own economic security to "L2" and
simply "borrow" it from Ethreum. Circuits of zkEVMs, though, have been identified to possess critical
security vulnerabilities because of the way they’re being developed. The inherent potential weaknesses
in their design and implementation raise concerns about the integrity of the overall zkRollup concept.

To address these security flaws, the transition from high-level code to Type-1 zkEVM circuits,
facilitated by compiling production-used EVM (e.g. evmone) through zkLLVM circuit compiler, emerges
as a promising solution. This process of compilation offers improved security and auditability to
zkEVM circuits, ensuring a more robust, trustworthy and bytecode EVM-compatible Ethereum execution
environment. By leveraging zkLLVM to transform high-level code into Type-1 zkEVM circuits, potential
vulnerabilities are mitigated, thereby bolstering the security and reliability of these circuits.

This paper aims to highlight the significance of this transition in fortifying the security of zkEVM
circuits by introducing a zkEVM compiled from high-level language-based production-used EVM im-
plementation which incrases the auditability and through this, security of a zkEVM produced as a
result.

1 Introduction

The Ethereum Virtual Machine (EVM) plays a crucial role in Ethereum by managing the deployment
and execution of EVM applications. Whenever a transaction leads to the execution of an application, the
EVM is instantiated, equipped with all necessary information related to the current replication packet in
progress and the specific transaction. The EVM’s role is to update the Ethereum state by calculating
legitimate state transitions based on the execution of an EVM application code, in accordance with the
specifications outlined in the Ethereum protocol.

A zero-knowledge Ethereum Virtual Machine (zkEVM) proves the execution of EVM applications in
a way that’s compatible with existing Ethereum infrastructure and augment it with a very small and
efficiently verifiable proof that all transactions are valid and after executing all those transactions the
updated state is correct.

A zkEVM is a promising solution to Ethereum’s scalability problem, but building it is non-trivial
problem for many reasons.

• A calculation that will be proven using SNARK must be represented as a circuit. But some EVM
functions (for example, Keccak hash function) are unfriendly to be presented in this form.

• A zkEVM must be able to provide proofs for any sequence of valid transactions, so we cannot say in
advance how many and what opcodes will be called. This significantly complicates the design of
circuits for the proof system, requiring overhead.

• There must be a universal proof-verification algorithm, the execution of which as a contract will be
relatively cheap in terms of gas.

• Circuits are difficult to maintain because their structure is very complex. They must be subject to
external audit periodically to avoid errors.

• A minor update of the EVM operation logic can lead to serious difficulties in updating the zkEVM.

As of today there is no ideal solution that would cope with all technical difficulties.
This specification proposes a Type-1 zkEVM based on the general-purpose modular proof system

Placeholder and the zkLLVM compiler. Our approach allows us to obtain a system that is easy to
update when EVM changes and new algorithms and techniques are added to SNARK. At the same
time, fine-tuning parameters and the possibility of parallelization make it possible to obtain performance
sufficient for large-scale practical use.
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1.1 Ethereum’s State

This section contains a description of the basic components of the Ethereum network. The description
is based on the [1, 2, 3].

1.1.1 Notation

Nn = {P : P ∈ N ∧ P < 2n}
B – string of bytes.
KEC – Keccak hash function.

1.1.2 World State

The world state σ is a mapping between addresses (160-bit identifiers) and account states. An
Ethereum account represents an entity with a balance of ether (ETH). There are two different types of
accounts in Ethereum: externally owned accounts (EOA) and contract accounts. Both account types are
able to receive, store, and send ETH and tokens, as well as interact with deployed applications. EOAs are
under the control of users, whereas contract accounts are governed by program code executed by the EVM.
Transactions from an EOA to a contract account can activate code, leading to the execution of various
actions such as token transfers or the creation of new contracts. The basic structure of a transaction is
illustrated in Figure 1.

Field Notation Value Description

nonce σ[a]n N256 A counter that indicates the number of transactions sent
from an EOA or the number of contracts created by a
contract account.

balance σ[a]b N256 The number of Wei owned by this address.
storageRoot σ[a]s B32 A hash of the root node of a trie that encodes the storage

contents of the account.
codeHash σ[a]c B32 This hash corresponds to the code of an account within the

EVM.

Table 1: The structure of an account

An account is valid when:

VALID(σ, a) ≡ σ[a]n ∈ N256 ∧ σ[a]b ∈ N256 ∧ σ[a]s ∈ B32 ∧ σ[a]c ∈ B32 = 1 (1)

An account is empty when it has no code, zero nonce and zero balance:

EMPTY(σ, a) ≡ σ[a]c = KEC
(
()
)
∧ σ[a]n = 0 ∧ σ[a]b = 0 (2)

An account is dead when its account state is non-existent or empty:

DEAD(σ, a) ≡ σ[a] = ∅ ∨ EMPTY(σ, a) (3)

1.1.3 Transaction

Transactions are signed messages originated by an EOA. The transaction message’s structure is
RLP-serialized and contains the data, mentioned in Figure 2.
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Field Leg. EIP-
2930

EIP-
1559

Not. Value Description

type + + + Tx {0, 1, 2} 0 (legacy), 1 (EIP-2930) or 2
(EIP-1559)

nonce + + + Tn N256 a sequentially incrementing
counter which indicates the
transaction number from the
account

gasLimit + + + Tg N256 the maximum amount of gas
units that can be consumed by
the transaction

to + + + Tt B20 or B0 The recipient of a transaction
(EOA or a contract address)

value + + + Tv N256 amount of ETH to transfer from
sender to recipient

r, s + + + Tr, Ts N256 the signature of the transaction
and used to determine the sender
of the transaction

accessList – + + TA {N256, {N256}j}i List of access entries to warm up
chainId – + + Tc β the network chain ID
yParity – + + Ty {0, 1} Signature Y parity
w + – – Tw N256 A scalar value encoding Y parity

and possibly chain ID
maxFeePerGas – – + Tm N256 the maximum fee per unit of gas

willing to be paid
maxPriorityFeePerGas – – + Tf N256 the maximum price of the con-

sumed gas to be included as a tip
to the validator

gasPrice + + – Tp N256 the number of Wei to be paid per
unit of gas for all computation

init + + + Ti B the EVM-code for the account ini-
tialisation procedure

data + + + Td B the input data of the message call

Table 2: The structure of a transaction

LT(T ) ≡


(Tn, Tp, Tg, Tt, Tv,p, Tw, Tr, Ts) if Tx = 0

(Tc, Tn, Tp, Tg, Tt, Tv,p, TA, Ty, Tr, Ts) if Tx = 1

(Tc, Tn, Tf , Tm, Tg, Tt, Tv,p, TA, Ty, Tr, Ts) if Tx = 2

(4)

where

p ≡

{
Ti if Tt = ∅
Td otherwise

(5)

1.1.4 EVM

The specific rules for changing Ethereum’s state from replication packet to replication packet are
defined by the Ethereum Virtual Machine (EVM). The EVM operates as the runtime environment for
applications: when an application begins its execution, the EVM creates an execution context that includes
various data structures and state variables that are outlined below.

The application code is presented as a byte array. Each array byte is an instruction opcode or an
immediate operand. The program counter (pc) (initially 0) identifies the next instruction to execute.
Executing an instruction consumes gas in the EVM, and this ensures that no infinite computation can
occur. Gas (g) is the fuel left for future computations.

The EVM has a simple stack-based architecture. The Stack (s) serves for storing temporary values
during the execution of applications. The stack operates with a maximum of 1024 256-bit words (initially
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empty). These elements may include control flow information, storage addresses, and the results and
parameters for application instructions.

Memory (m) is a 256-bit addressable, contiguous dynamically sized array of bytes (initially empty).
Memory is volatile and only available during the current program execution. Memory expands on-demand
when a value is read or written to a given location. Values can be read from/written to memory using
the instructions MLOAD, MSTORE, MLOAD8 or MSTORE8. The active number of words in memory
(counting continuously from position 0) is denoted as i.

The machine state µ is defined as the tuple (g, pc,m, i, s).
Storage is a persistent (it is retained between calls) key-value store that maps 256-bit words to 256-bit

words. Storage can be read/written using the instructions SLOAD or SSTORE (which allow writing and
reading 32 bytes). All locations in storage are well-defined initially as zero.

In addition to the system state σ and machine state µ an execution environment also includes elements
that mentioned in table 3.

Element of Execution Environment Notation

the address of the account which owns the code that is executing Ia
the sender address of the transaction that originated this execution Io
the price of gas paid by the signer of the transaction that originated this
execution. This is defined as the effective gas price

Ip

the byte array that is the input data to this execution; if the execution agent
is a transaction, this would be the transaction data

Id

the address of the account which caused the code to be executing; if the
execution agent is a transaction, this would be the transaction sender

Is

the value, in Wei, passed to this account as part of the same procedure
as execution; if the execution agent is a transaction, this would be the
transaction value

Iv

the current replication packet header IH
the depth of the present message-call or contract-creation (i.e. the number
of CALLs or CREATE(2)s being executed at present)

Ie

the permission to make modifications to the state Iw

Table 3: The Execution Environment variables

2 Preliminaries

This section describes the precursor set of technologies leading to zkEVM1.

2.1 Placeholder Proof System

Initiated in 2021, Placeholder [4] represents a modular proof system that incorporates a range of
cryptographic primitives, including commitment schemes, lookup tables, and gate generation techniques.

In this section we focused on the Placeholder options that are relevant to zkEVM1. Overall zkEVM1
circuit is defined by fixed parameters and various sets of constraints (Basic, Copy, Lookup) on the Execution
trace. The Execution trace stores values used during computations. It is represented by a rectangular
matrix TTT (which we’ll refer to as Table) with Nrows rows and Ncol columns:

TTT =
[
τ⃗T0 , . . . , τ⃗TNcol−1

]
.

2.1.1 Lookup Tables

The Lookup argument assumes a important role in the zkEVM construction, presenting a mechanism
for sharing non-fixed records across multiple circuits with minimal overhead compared to a singular circuit
approach. This technique necessitates only the incorporation of an extra circuit, specifically designed to
provide evidence of the construction of the lookup table. In this way, zkEVM leverages the flexibility
of the Lookup argument to efficiently manage and share dynamic data among distinct circuits, thereby
enhancing the overall versatility and scalability of the construction.
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Generalization Of Plookup [5] There are two components to the lookup argument, similar to the
original PLONK argument: permutation and assertion check. We keep them as is. Initially, the prover
rearranges a⃗ and l⃗ in a way that makes the verification of inclusion lookup queries into l⃗ a relatively
straightforward task. Subsequently, the prover presents a permutation argument for the permuted columns.
Finally, they demonstrate that the values from the permuted a⃗ form a subset of the values from the
permuted l⃗. However, we add some flexibility to the original PLONK argument by allowing the prover to
use any number lookup queries inside one lookup protocol. Moreover, the prover can compress several
lookup tables inside one column of the execution trace. Vice versa, the prover can split one lookup table
into several columns.

2.1.2 Gate Generation

Here, we have two approaches, TurboPlonk or IVC Plonkish. Both methodologies require the utilization
of custom gates, main component in the formulation of constraints. These constraints serve as expressions
for the values within a table for a specific row, potentially spanning several adjacent ones. In the context
of these constraints, let o represent the set of offsets for the row indices involved in the constraint, typically
taking the form −1, 0, 1. Each j-th constraint, where 0 ≤ j < Cbs, is defined by a multivariate polynomial
C′j of total degree Cdg over the table values. This expression is given as:

C′j({w⃗0,i+o′}o′∈o, . . . , {w⃗Nwt−1,i+o′}o′∈o) = 0, where i – number of row, i ∈ [Nrows] (6)

Selectors detect inclusion/exclusion of a Basic Constraint check within a row. These selectors are integrated
into the assertion process, collectively forming what is referred to as a "Gate." Each gate encompasses one
or more constraints, and every row must satisfy all gates stipulated by the circuit. This robust framework
ensures the integrity and compliance of each row with the specified set of constraints, contributing to the
overall efficacy of the circuit.

2.1.3 Commitment Schemes

In selecting commitment schemes, we opt for a LPC and batched KZG scheme. Specifically, the LPC
scheme is utilized for the initial layer, and KZG is employed for the subsequent two layers.

KZG Polynomial commitment schemes KGZ, introduced in [6], uses a triple of groups (G1, G2, G3) with
an efficiently computable non-degenerate bilinear pairing e : G1 ×G2 → G3. Let Pi be generators of Gi

for i = 1, 2, 3. We denote x · Pi by [x]i for i = 1, 2 and any x ∈ Fp. A trusted setup Gen generates srs
which contains powers of a random field element α ∈ Fp: (P1, α · P1, ..., α

d−1 · P1, P2, α · P2). The value
of α must remain secret. For any polynomial f ∈ F<d

p [X], f =
∑d−1

i=0 ciX
i commitment to f defined by

Commit(f) = [f(α)]1 that can be calculated using srs:

[f(α)]1 =

(
d−1∑
i=0

ci · αi

)
· P1 =

d−1∑
i=0

ci · srsi.

To prove that f(z) = s, the EvalProof simply outputs a commitment π = [h(α)]1 to the quotient
polynomial h = (f(X)− s)/(X − z). A correctly generated proof will satisfy e(π, [α]2 − [z]2) = e(h(α) ·
P1, (α − z)P2) = e((f(α) − s) · P1, P2). The proof is accepted by the verifier (EvalVerify) if and only if
e([f(α)]1 − [s]1, [1]2) = e(π, [α − z]2). For the performance of the Placeholder, we use a version of the
protocol that allows it to query multiple committed polynomials at multiple points at a time. An efficient
batch version of the KZG is described in [7].

LPC We use a scheme, which is based on LPC [8], which is generalization of polynomial commitment
scheme. An (ε, k)-list polynomial commitment scheme for some metric ∆ : F [X]× F [X]→ [0, 1] and all
δ > 0 consists of the following:

• Gen(1λ)→ pp generates public parameters,
• Com : F < d[X]→ C commitment c to some f ,
• An IOP system (P, V ) with ε(δ) soundness and k(δ) rounds of interaction for the relation Rδ(pp) :=〈(

d,N, {zi, yi}Ni=1, c
)
; f
〉
∃g ∈ F < d[X],∆(f, g) < δ, ∀i ∈ [N ], g(zi) = yi,Com(g) = c for which

(P, V ) are both provided with degree bound d, and a set of point-evaluation pairs {(zi, yi)}Ni=1 and
commitment c ∈ C, while P is also provided with a representation of f ∈ F [X]. Both P and V have
access to an oracle for Com(·).
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2.1.4 WIP

Also, several approaches that can significantly increase the efficency of generating proofs for zkEVM
are in the implementation stage.

Lookup Singularity Lookup techniques are actively used in the design of zkEVM. In particular, to
prove data consistency in different tables given in 3. The need to commit these tables does not allow them
to be large.

Lookup Singularity is the idea that we can efficiently define circuits using lookup arguments only.
Lasso [9] is a lookup technique that allows the use of enormous tables 2128 or larger (if they are structured).
In this case, the execution of each instruction is replaced by a single lookup.

IVC Executing zkEVM requires proving a sequence of "similar" operations. One promising approach
for this case is the use of IVC. Incrementally-verifiable computation (IVC) is a cryptographic tool that
allows for the generation of proofs verifying the correct execution of "long-running" computations:

t− step computation (nondeterministic): for z0, zt, F :

∃z1, . . . , zt−1, w0, . . . , wt−1 : ∀i ∈ {0, . . . , t− 1} : F (zi, wi) = zi+1

A number of works ([10, 11, 12]) propose a folding technique that brings an elegant way to implement
IVC. The folding scheme allows you to combine several NP instances of the same type into one that is a
randomized sum of them, and then folds this claim about the randomized sum.

However, the arithmetization must be sufficiently expressive to construct an efficient zkEVM, so
it is preferable to use PLONKish arithmetization instead of R1CS. We rely on Protostar ([13]) in our
implementation. This approach extends the PLONK relation by using d-homogenous polynomials and
introducing the slack vector E:

d∑
j=0

µd−j · fj(pi,w, [r]ki=1) = E,

where pi – public input, w – witness of the instance.

2.2 zkLLVM

zkLLVM ([14]) is a circuit compiler designed to translate high-level mainstream languages, such as
C++ and Rust, into representations suitable for provable computation protocols, namely circuits for proof
systems.

The architecture of zkLLVM offers distinct advantages over other methods of circuit development:

1. It allows users to directly compile their algorithm into circuits, without needing a custom Domain
Specific Language (DSL) and duplicating source code.

2. It omits any intermediary layer, such as a specific zkVM, between the original algorithm and
the resulting circuits. This absence translates to no additional overhead in the circuit size (and
consequently, the proving time).

3. Due to direct access to the inner circuit representation, zkLLVM facilitates the generation of
optimized low-level verifier code tailored for specific virtual machines. For example, =nil; utilizes
the zkLLVM transpiler1 for the EVM Placeholder verifier.

4. As an LLVM-based compiler, zkLLVM boasts compatibility with any LLVM IR-based extension.
Consequently, several developments dedicated to LLVM IR have emerged in the zkLLVM ecosystem.

zkLLVM is based on LLVM framework because of several reasons:

1. Wide variety of language frontends available for LLVM which make zkLLVM capable of parsing
those languages out of the box.

2. Modular architecture which allows to introduce circuit-specific adjustments to the memory model
used as the closes memory model which allows to map data within the constraint table is a coherent
memory model which is also widely used within various LLVM backends.

1https://github.com/NilFoundation/zkllvm-transpiler
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3. Extensibility of an LLVM framework enables composability of various backends with various frontends
or even of various backends with various backends. This means with proper backends/frontends
being implemented zkLLVM is capable of achieving formal verifiability of its circuits produced
with combining its proof system backend with an LLVM-based KFramework 2) or an FHE-enabled
backend.

3 Three layers of zkEVM

As mentioned earlier, the zkEVM comprises numerous circuits, each representing a distinct EVM
state condition. These circuits can be aggregated through a wrapping strategy. The wrapping strategy is
straightforward: all sub-circuits are collectively verified within the encompassing circuit, and their tables
are shared uniformly among them. We can split this zkEVM circuit into several steps:

1. Preprocessing The non-fixed shared public tables are generated and padded to the chosen size. In
this step, we assign values to the lookup columns in the execution table. We aim to do this in the
most compact manner, utilizing rectangles in constant rows, for EVM circuit. The rows of these
rectangles are determined by selectors, and the columns are based on the lookup table description.
It’s important to note that this is a preparation step for the prover process. The lookups tables size
is restricted by the 218 rows, which is the maximum number of rows that can be processed by the
prover.

2. Low-level Layer We collect all low-level circuits proofs separately from each other along with their
shared public input. In this layer, we employ a LPC to introduce flexibility in choosing the field size.
The total number of rows is capped at 218, with a blowup factor of 23 and a maximum gate degree
of 9. The total number of inner FRI rounds remains unchanged at 40. We use the general Plookup
optimization across 50 distinct lookup gates.

3. Root Layer We verify the low-level circuits proofs and generate two new proofs for the root
circuits. These root circuits are divided based on the prover’s performance. Each circuit operates
independently, with shared lookup tables being the only common element. Thus, this design allows
for straightforward aggregation without additional complexities. The aggregation circuit utilizes a
batched KZG commitment, featuring 222 rows and a maximum gate degree of 9, with no lookup
tables involved.

4. Proof Layer We avoid using lookups and generate a single proof for the whole zkEVM circuit
based on verification cost. The final circuit comprises 216 rows with a maximum gate degree of 9,
and it does not involve any lookup tables. All properties the same as in the previous layer. The
total verification cost is 500, 000 gas.

3.1 Preprocessing

The Preprocessing is responsible for generating all non-fixed shared public tables.

1. Read-Write Table validates the integrity of all random read-write access records. Here we group all
records by type of the data target (Storage, Memory, Stack, etc).

2. Storage Table is used to check the validity of storage operations. The corresponding circuit checks
the correctness of read and write operations with the Merkle Patricia Tree data structure.

3. Keccak Table is used to store the results of executing the Keccak hash function. The corresponding
circuit checks the correctness of the table entries.

4. Tx Table contains transactions fields. The corresponding circuit checks the correctness of these
transactions in accordance with the EVM specification.

5. Bytecode Table contains the bytecode that must be executed in the EVM. The corresponding circuit
checks that the bytecode stored in the contract matches the bytes in the table.

6. Copy Table contains a list of records with data copying operations between bytecode, memory, log,
etc.

2https://kframework.org/index.html
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7. Block Table contains block’s header fields. The corresponding circuit checks the hash code of these
fields.

8. Withdrawal Table validates that the merkle patricia trie identified by the root withdrawalsRoot
contains all the withdrawals.

9. ECDSA Table contains the results of executing the ECDSA signature scheme. The corresponding
circuit checks the correctness of the table entries.

Low-Level Layer

We describe all components in detail in this section. Firstly, we describe the part that can’t be
generated by zkLLVM, as it uses unique selectors constraints and custom gates.

1. Generate a RW proof for Read-Write Table. This involves initial grouping of records based on their
unique indices, followed by a sorting process dictated by the order of access, encapsulated by the
special counter ReadWriteCounter. Thus, we use the following constraints:

• Check grouping of records by their data storing target type.
• Sort by address and ReadWriteCounter in ascending order.
• By using selectors we check storage records for account existence and verify storage records.

So, this part would works analougly to the PSE solution:

3.1.1 Start

• 1.0. field_tag, address and id, storage_key are 0
• 1.1. rw counter increases if it’s not first row
• 1.2. value is 0
• 1.3. initial_value is 0
• 1.4. state root is the same if it’s not first row

3.1.2 Memory

• 2.0. field_tag and storage_key are 0
• 2.1. value is 0 if first access and READ
• 2.2. Memory address is in 32 bits range
• 2.3. value is byte
• 2.4. initial_value is 0
• 2.5. state root is the same

3.1.3 Stack

• 3.0. field_tag and storage_key are 0
• 3.1. First access is WRITE
• 3.2. Stack pointer is less than 1024
• 3.3. Stack pointer increases 0 or 1 only
• 3.4. initial_value is 0
• 3.5. state root is the same

3.1.4 Storage

• 4.0. field_tag is 0
• 4.1. MPT lookup for last access to (address, storage_key)
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3.1.5 Call Context

• 5.0. address and storage_key are 0
• 5.1. field_tag is in CallContextFieldTag range
• 5.2. value is 0 if first access and READ
• 5.3. initial value is 0
• 5.4. state root is the same

3.1.6 Account

• 6.0. id and storage_key are 0
• 6.1. MPT storage lookup for last access to (address, field_tag)

3.1.7 Tx Refund

• 7.0. address, field_tag and storage_key are 0
• 7.1. state root is the same
• 7.2. initial_value is 0
• 7.3. First access for a set of all keys are 0 if READ

3.1.8 Tx Access List Account

• 8.0. field_tag and storage_key are 0
• 8.1. state root is the same
• 8.2. First access for a set of all keys are 0 if READ

3.1.9 Tx Access List Account Storage

• 9.0. field_tag is 0
• 9.1. state root is the same
• 9.2. First access for a set of all keys are 0 if READ

3.1.10 Tx Log

• 10.0. is_write is 1
• 10.1. state root is the same

3.1.11 Tx Receipt

• 11.0. address and storage_key are 0
• 11.1. field_tag is boolean (according to EIP-658)
• 11.2. tx_id increases by 1 and value increases as well if tx_id changes
• 11.3. tx_id is 1 if it’s the first row and tx_id is in 11 bits range
• 11.4. state root is the same

2. Storage Proof generate a proof of existence for all storage and account records. It containts
verifying of Mercle Tree Patricia paths by lookups to keccak table. A Merkle Patricia Tree (MPT),
also known as a Trie, is a data structure used in Ethereum to efficiently store and retrieve key-value
pairs in a cryptographically secure manner. It is an extension of the traditional Merkle Tree and
Patricia Trie structures. MPT circuit checks that the update of the trie state happened correctly.

To verify the inclusion or absence of a key-value pair, you need the authentication path and the root
hash of the Merkle Tree.

The circuit checks the transition from value to value′ at key that led to the change of trie root
from root to root′. To prove the correctness of two paths: path : (key, value) → root and path′ :

(key, value′)→ root′ we have to prove that the hash of all child nodes on the path appears at the
correct position of the parent node.
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3. Keccak Proof generate a proof of calculation for all Keccak records. It contains a lot of custom
gates and produces Keccak shared public input. There are two parameters. r - bitrate, which defines
padding of the input and the size of a padded message chunk during Absorbing step. c - capacity,
which defines the number of other bits that don’t interact with input; this part gives more security
to the hash. b = r + c - bit length of the inner state of the hash. We use b = 1600, r = 1088, c = 512

bits as in Ethereum.
There is used a vector of 24 round constants RC.

Algorithm 1 Keccak-f[r,c](M)
Padding:
P = M ||0x01||0x00∗, so that len(P )%r = 0; P = P ⊕ 0x80. Absorbing:
S[x, y] = 0, ∀(x, y) ∈ [0, 4].
for Pi ∈ P : where len(Pi) = r.
S[x, y] = S[x, y]⊕ P [x+ 5y], ∀(x, y)|x+ 5y < r/w.
for i ∈ [0, 24):
S = Round[r + c](S,RC[i]) Squeezing:
Z = empty string
while output is requested:
Z = Z||S
for i ∈ [0, 24):
S = Round[r + c](S,RC[i])

There is used a 5× 5 matrix of cyclic shifts r.

Algorithm 2 Round[b](A, RC)
θ-step:
C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4], ∀x ∈ [0, 5).
D[x] = C[x− 1]⊕ROT (C[x+ 1], 1), ∀x ∈ [0, 5).
A[x, y] = A[x, y]⊕D[x], ∀(x, y) ∈ [0, 5)× [0, 5).
ρ/π-step:
B[y, 2x+ 3y] = ROT (A[x, y], r[x, y]), ∀(x, y) ∈ [0, 5)× [0, 5).
ξ-step:
A[x, y] = B[x, y]⊕ (B[x+ 1, y] AND B[x+ 2, y]), ∀(x, y) ∈ [0, 5)× [0, 5).
ι-step:
A[0, 0] = A[0, 0]⊕RC.
Return A

4. Tx Proof generate a proof of existence for all transaction records. The transaction proof validates
the signature of each transaction, ensures that the Merkle Patricia Trie identified by the root
transactionsRoot includes all and only the intended transactions, and facilitates convenient access
to the transaction data for the EVM proof through the transactions table.

(a) txSignData: bytes = rlp([nonce, gas_price, gas, to, value, data, chain_id, 0,
0])

(b) txSignHash: word = keccak(txSignData)

(c) sig_parity: {0, 1} = sig_v - 35 - chain_id / 2

(d) ecdsa_recover(txSignHash, sig_parity, sig_r, sig_s) = pubKey or equivalently
verify(txSignHash, sig_r, sig_s, pubKey) = true

(e) fromAddress = keccak(pubKey)[-20:]

5. Bytecode Proof generate a proof of existence for all bytecode records.

10
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3.1.12 Constraints for i = first or i = last

w[i]["tag"] = "Header"

3.1.13 Constraints for (w[i]["tag"] = "Header") ∧ (i ̸= last)

w[i]["index"] = 0

w[i]["value"] = w[i]["length"]

3.1.14 Constraints for (w[i]["tag"] = "Byte") ∧ (i ̸= last)

push_data_size_table_lookup(w[i]["value"], w[i]["push_data_size"])

w[i]["is_code"] = (w[i]["push_data_left"] = 0)

3.1.15 Constraints for (w[i]["tag"] = "Header") ∧ (w[i+ 1]["tag"] = "Header") ∧ (i ̸= last)

w[i]["length"] = 0

w[i]["hash"] = EMPTY_HASH

3.1.16 Constraints for (w[i]["tag"] = "Header") ∧ (w[i+ 1]["tag"] = "Byte") ∧ (i ̸= last)

w[i+ 1]["length"] = w[i]["length"]

w[i+ 1]["index"] = 0

w[i+ 1]["is_code"] = 1

w[i+ 1]["hash"] = w[i]["hash"]

w[i+ 1]["value_rlc"] = w[i+ 1]["value"]

3.1.17 Constraints for (w[i]["tag"] = "Byte") ∧ (w[i+ 1]["tag"] = "Byte") ∧ (i ̸= last)

w[i+ 1]["length"] = w[i]["length"]

w[i+ 1]["index"] = w[i]["index"] + 1

w[i+ 1]["hash"] = w[i]["hash"]

w[i+ 1]["value_rlc"] = w[i]["value_rlc"] ∗ randomness+ w[i+ 1]["value"]

(w[i]["is_code"] = 0) ∨ (w[i+ 1]["push_data_left"] = w[i]["push_data_size"])

(w[i]["is_code"] = 1) ∨ (w[i+ 1]["push_data_left"] = w[i]["push_data_left"]− 1)

3.1.18 Constraints for (w[i]["tag"] = "Byte") ∧ (w[i+ 1]["tag"] = "Header") ∧ (i ̸= last)

w[i]["index"] + 1 = w[i]["length"]

keccak256_table_lookup(w[i]["hash"], w[i]["length"], w[i]["value_rlc"])

11
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3.1.19 Constraints for i = last

w[i]["length"] = 0

w[i]["hash"] = EMPTY_HASH

6. Copy Proof generate a proof of existence for all copy records.

3.1.20 Common constraints

w[i]["is_first"] ∈ {0, 1}
w[i]["is_last"] ∈ {0, 1}
(w[i]["q_step"] = 0)⇒ (w[i]["is_first"] = 0)

(w[i]["q_step"] = 1)⇒ (w[i]["is_last"] = 0)

rw_diff = (w[i]["tag"] = "Memory") ∨ (w[i]["TxLog"] = 0 ∧ w[i]["Padding"] = 0)

(w[i]["is_last"] = 0)⇒ w[i+ 1]["rw_counter"] = w[i]["rw_counter"] + rw_diff

(w[i]["is_last"] = 0)⇒ w[i+ 1]["rw_inc_left"] = w[i]["rwc_inc_left"]− rw_diff

w[i]["rlc_acc"] = w[i+ 1]["rlc_acc"]

(w[i]["is_last"] = 1)⇒ w[i]["rwc_inc_left"] = rw_diff

(w[i]["is_last"] = 1 ∧ w[i]["is_rlc_acc"] = 1)⇒ w[i]["rlc_acc"] = i

3.1.21 Transition constraints for all rows except the last two rows

w[i]["id"] = w[i+ 2]["id"]

w[i]["tag"] = w[i+ 2]["tag"]

w[i]["src_addr_end"] = w[i+ 2]["src_addr_end"]

w[i]["addr"] + 1 = w[i+ 2]["addr"]

3.1.22 Constraints for q_step = 1

lookup (Type, Type[1])

(w[i]["is_last"] = 0)⇒ (w[i+ 1]["bytes_left"] = w[i]["bytes_left"]− 1)

(w[i]["is_rlc_acc"] = 0)⇒ (w[i]["value0"] = w[i]["value1"])

(w[i]["is_rlc_acc"] = 1 ∧ w[i]["is_first"] = 1)⇒ (w[i]["value0"] = w[i]["value1"])

(w[i]["Padding"] = 1)⇒ w[i]["Value"] = 0

(w[i]["addr"] ≥ w[i]["src_addr_end"])⇒ w[i]["Padding"] = 1

3.1.23 Constraints for q_step = 0

(w[i]["q_step"] = 0 ∧ w[i]["is_rlc_acc"] = 0 ∧ w[i]["is_last"] = 0)⇒
w[i+ 2]["Value"] = w[i]["Value"] ∗ r + w[i+ 1]["Value"]

7. Block Proof
The proof is used to verify the hash code of the block header values. Namely, the following pieces of
information are fed to the input of the hash function.

12



Dra
ft

• parentHash
• ommersHash
• beneficiary
• stateRoot
• transactionsRoot
• receiptsRoot
• logsBloom
• difficulty
• number
• gasLimit
• gasUsed
• timestamp
• extraData
• mixHash
• nonce
• baseFeePerGas

It also serves as a lookup table for the higher level circuit to access header fields.

8. Withdrawal Proof generate a proof of correctness for all withdrawal records. Namely, the circuit
verifies the followings:

• withdrawalsData: bytes = rlp([withdrawal_index, validator_index, address,
amount])

• withdrawalDataHash: word = keccak(withdrawalsData)
• withdrawalsRoot: word = mpt(withdrawalDataHash)
• withdrawal_index, validator_index and amount are all uint64 values.
• amount_wei = amount * 1e9 and increases validator’s balance by amount_wei

Also there are some general constraints:

• WithdrawalID is increased monotonically and sequentially for each withdrawal.
• MPT root is used to lookup MPT table.

9. Public Inputs Proof consolidates all the data that is used to generate the final proof. For the
array of this data, the Kechchak hash function is computed. The result should match the public
input of zkEVM. For such a check, the Keccak table is used, described in section 3. Additionally,
the proof verifies that the values in other tables (data in transaction table, state_root, etc) were
taken from the correct sections of the input data.

10. ECDSA Proof serves to verify the correct execution of the ECDSA scheme operations. Namely,
Given a signature (Tr, Ts), a message hash, and a secp256k1 public key Q, it checks that

T ′
r = Tr,

where
T ′
r = u1 · P + u2 ·Q,

u1 = (e · w) mod n,

u2 = (r · w) mod n,

P – base point of elliptic curve, w = T−1
s .

The basis of the test is to prove operations on an elliptic curve. More specifically, check constraints
are used for the following operations:

• Addition The gates uses basic group law formulae. Let P = (x1, y1), Q = (x2, y2), R = (x3, y3)

and R = P +Q. Then:
– (x2 − x1) · s = y2 − y1
– s2 = x1 + x2 + x3

– y3 = s · (x1 − x3)− y1

For point doubling R = P + P = 2P :
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– 2s · y1 = 3x2
1

– s2 = 2x1 + x3

– y3 = s · (x1 − x3)− y1

• Scalar multiplication
– P = [2]T

– for i from n− 1 to 0:
(a) Q = ki ? T : −T
(b) P = P +Q+ P

Some of components can be generated by zkLLVM, as they use already existing primitives.
EVM Proof generate a real proof of instructions executions within the Ethereum Virtual Machine
(EVM). We make the assumption of a constrained assignments table, which is produced by a compiler
based on gas limitations. The table is constrained by the total number of blocks, where each block
represents the execution of an opcode.

The construction of each replication packet involves the following components:

1. The first part encompasses data linked to a contract: codehash, gas, root, stack pointer,
and the number of operations.

2. The second part consists of selector equations used to choose the appropriate constraint system.

3. The third part denotes the maximal total number of rows required for the larger constraint system.

zkLLVM is responsible for generating the second and third regions for a block based on selected sets of
instructions. Consequently, zkLLVM possesses the capability to replicate not only zkEVM but any zkVM,
provided that it has a sufficient set of primitives for the desired virtual machine.

4 Root Layer

Here we describe the second layer of the zkEVM, which is responsible for aggregating all the sub-circuits
and tables together.

1. It verifies EVM Proof, State Proof, MPT Proof, Keccak Proof and Tx Proof together in the first
proof.

2. It verifies Bytecode Proof, Copy Proof, Block Proof, PublicInputs Proof, Withdrawal Proof and
ECDSA proof together in the second proof.

The second layer circuit is composed of the following primitive circuits:

1. The arithmetization of the copy constraints

Algorithm 3 Permutation Argument Verification

(a) β1, γ1 = transcript.get_challenge()

(b) transcript.append(VP,comm),

(c) Denote :

gperm(y) :=
∏Nperm+NPI−1

i=0 (fi(y) + β · Sidi
(y) + γ)

hperm(y) :=
∏Nperm+NPI−1

i=0 (fi(y) + β · Sσi
(y) + γ)

(d) Calculate:

F0(y) = L0(y)(1− VP (y))

F1(y) = (1− (qlast(y) + qblind(y))) · (VP (ωy) · hperm(y)− VP (y) · gperm(y))
F2(y) = qlast(y) · (VP (y)

2 − VP (y))

The values fi(y), Sidi
(y), Sσi

(y), VP (y), L0(y), qlast(y), qblind(y), VP (ωy) are input to circuit. The
part of permutation argument circuit for calculating gperm(y) and hperm(y) has ⌈ (Nperm+NPI−1)

6 ⌉ · 2
rows. Each row has a following construction:

14



Dra
ft

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

j β γ fi(y) fi+1(y) fi+2(y) fi+3(y) fi+4(y) fi+5(y) Si(y) Si+1(y) Si+2(y)

w11 w12 w13 w14

Si+3(y) Si+4(y) Si+5(y) accperm

The Si is Sidi
(y) or Sσi

(y) and accperm is a product of previous accperm and ((fj(y)+β ·Sj(y)+ γ))

for j ∈ {i, ..., i + 5}. The accperm equal to 1 in the first row. All unused cells for Si have to be
equal to 1 as well. If we arrange the cells in such a way that the calculation of gperm(y) would be
below and the calculation of hperm(y) is above then we can easily construct the row for calculation
F0(y), F1(y)andF2(y):

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

j F0(y) F1(y) F2(y) VP (y) L0(y) qlast(y) qblind(y) VP (ωy) gperm(y) hperm(y) −

w11 w12 w13 w14

− − − −

2. Arithmetization of the lookup constraints

Algorithm 4 Lookup Argument Verification

(a) θ = transcript.get_challenge()

(b) transcript.append(Aperm,comm), transcript.append(Sperm,comm), transcript.append(VL,comm)

(c) For i = 0, . . . , Nlookup − 1 :

i. lookup_gatei(y) := qli(y) · (θνiA0i(ω
d0i y) + · · ·+ θki−1+νiAki−1(ω

dki−1y))

ii. table_valuei(y) := qli(y) · (θνiS0i(y) + · · ·+ θki−1+νiSki−1(y))

(d) Construct the input lookup compression and table compression:

Acompr(y) :=
∑

0≤i<Nlookup
lookup_gatei(y)

Scompr(y) :=
∑

0≤i<Nlookup
table_valuei(y)

(e) β, γ = transcript.get_challenge()

(f) Denote :

gL(y) = (Acompr(y) + β) · (Scompr(y) + γ)

hL(y) = (Aperm(y) + β) · (Sperm(y) + γ)

(g) Calculate:

F3(y) = L0(y)(1− VL(y))

F4(y) = (1− (qlast(y) + qblind(y))) · (VL(ωy) · hL(y)− VL(y) · gL(y)
F5(y) = qlast(y) · (VL(y)

2 − VL(y))

F6(y) = L0(y)(Aperm(y)− Sperm(y))

F7(y) = (1− (qlast(y) + qblind(y))) · (Aperm(y)− Sperm(y)) · (Aperm(y)−Aperm(ω
−1y))

The values qli(y), Ar(ω
dry), Sr(y), VL(y), L0(y), qlast(y), qblind(y), VL(ωy), Aperm(y), Sperm(y), Aperm(ω

−1y)

are input to circuit. The part of lookup argument circuit for calculating Acompr(y) and Scompr(y) has

⌈

Nlookup−1∑
i=0

ki

4 ⌉ rows. Each row has a following construction:

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

j Θ Ar(y) Sr(y) qli(y) Ar+1(y) Sr+1(y) qli(y) Ar+2(y) Sr+2(y) qli(y) Ar+3(y)

w11 w12 w13 w14

Sr+3(y) qli(y) Acompr(y) Scompr(y)
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The Ar(ω
dry) and Sr(y), where r ∈ {oi, .., ki − 1}. The values Acompr(y), Scompr(y) are a sum

of previous Acompr(y), Scompr(y) and qli(y) · θνiA0i(ω
d0i y) + · · · + qli(y) · θki−1+νiAki−1(ω

dki−1y))

for j ∈ {i, ..., i + 3}. The accperm equal to 0 in the first row. All unused cells for Ar and
Sr have to be equal to 0 as well. Now we can easily construct the last row for calculation
F3(y), F4(y), F5(y), F6(y)andF7(y):

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

j F3(y) F4(y) F5(y) VP (y) L0(y) qlast(y) qblind(y) VP (ωy) Aperm(y) Sperm(y) Acompr(y)

w11 w12 w13 w14

j Scompr(y) F6(y) F7(y) Aperm(ω
−1y)

3. Arithmetization of the custom gates

Algorithm 5 Quotient Polynomial Check

(a) Z(y) = yNrows − 1

(b) T (y) = T0(y) + ydT1 + · · ·+ ytotaldeg−d∗NT TNT
(y)

(c)
9∑

i=0

αiFi(y) = Z(y)T (y)

The values y, T0(y), . . . , TNT
(y) are input to circuit. The first step requires ⌈ log4(Nrows)

14 ⌉ rows. Each
row has a following construction:

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

j acc acc · y acc · y2 acc · y3 acc · y4 acc · y5 acc · y6 acc · y7 acc · y8 acc · y9 acc · y10

w11 w12 w13 w14

acc · y11 acc · y12 acc · y13 acc · y14

The acc equal to 0 in the first row. We suppose that in the general case one row is sufficient.

The second step requires exponentiationcircuit.rows · (NT − 1) + ⌈NT ∗2−1
12 ⌉ rows.

4. Exponentiation Circuit The last rows have a following contruction:

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

j y′ Ti(y) y′ Ti+1(y) y′ Ti+2(y) y′ Ti+3(y) y′ Ti+3(y) y′

w11 w12 w13 w14

Ti+4(y) acc nextacc −

The values nextacc are a sum of acc and y′ · Ti(y) + · · ·+ y′ · Ti+4(y). The acc equal to 0 in the first
row and nextacc from previous row for the next row. All unused cells for y′ and Ti(y) have to be
equal to 0. Now the value next− acc in the last row is T (y).

The third step requires one row:

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

j Z(y) T (y) α α6 F0(y) F1(y) F2(y) F3(y) F4(y) F5(y) F6(y)

w11 w12 w13 w14

F7(y) F8(y) −− −
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5. Arithmetization of the commitment scheme
The following algorithm is a binary-expansion version of the Miller loop.

Algorithm 6 The Miller Loop

Inputt =
L∑

i=0

ci2
i, ci ∈ {0, 1}, cL = 1; P ∈ E(Fp); Q ∈ E′(Fp2) Outputf ∈ Fp12

f ←− 1 T ←− Q Fori ←− L − 1 To 0 f ←− f2 · LineFunction(T, T, P ) T ←− T + T Ifci = 1

f ←− f · LineFunction(T,Q, P ) T ←− T +Q

The part of Miller loop that manipulates points from the curve E′(Fp2) is actually identical to
the computation of the scalar product [t]Q (or [−t]Q since we ignore the sign) by means of a
double-and-add process.

Algorithm 7 LineFunction
InputQ1 = (x1, y1) ∈ (Fp2)2, Q2 = (x2, y2) ∈ (Fp2)2, P = (x, y) ∈ (Fp)

2 Outputf ′ ∈ Fp12

tcpUntwist Q1, Q2 Q1 ←− (x1/v, y1/(wv)) Q2 ←− (x2/v, y2/(wv)) tcpNow Q1, Q2 ∈ (Fp12)2

eIfQ1 = Q2 l ←− 3x2
1

2y1
f ′ ←− l(x − x1) + y1 − y eIfx1 = x2 and y1 = −y2 f ′ ←− x − x1 l ←−

(y2 − y1)/(x2 − x1) f ′ ←− l(x− x1) + y1 − y

Table 4: Final Exponentiation circuit outline, part 1

f Input, result of the Miller loop.
f−1 Gates centered on this row assure the computation of f−1 and fp6

which
are basically unary operations

fp6

in Fp12 .
f ′ = fp6−1 Computed by a multiplication gate centered on the previous row.

(f ′)p
2

Computed by a unary operation gate centered on the previous row.
f ′′ = (f ′)p

2+1 Computed by a multiplication gate centered on the previous row.
... A block of gates for raising to power (1− t)/3.

(f ′′)(1−t)/3

... A block of gates for raising to power −t.
((f ′′)(1−t)/3)−t

(f ′′)(t−1)/3 Assured by copy constraints.
g = ((f ′′)(1−t)/3)1−t Computed by a multiplication gate centered on previous row.

6. Arithmetization of the transcript
Therefore, each permutation state is represented by 3 elements and each row contains 5 states.

Denote i-th permutation state by Ti = (Ti,0, Ti,1, Ti,2).

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i T0,0 T0,1 T0,2 T1,0 T1,1 T1,2 T2,0 T2,1 T2,2 T3,0 T3,1 T3,2 T4,0 T4,1 T4,2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

i+ 10 T50,0 T50,1 T50,2 T51,0 T51,1 T51,2 T52,0 T52,1 T52,2 T53,0 T53,1 T53,2 T54,0 T54,1 T54,2

i+ 11 T55,0 T55,1 T55,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

State change constraints:

STATE(i+ 1) = STATE(i)α · MDS+ RC

Denote the index of the first state in the row by start (e.g. start = 50 for 10-th row). We can
expand the previous formula to:
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Table 5: Final Exponentiation circuit outline, part 2

g The last row of the previous part of the circuit.
g−1 Gates centered on this row assure the computation of
gp

3

g−1 and gp
3

.
g Assured by copy constraints.
... A block of gates for raising to power −t.

g−t

... A block of gates for raising to power −t.
gt

2

g−1 Assured by copy constraints.
gt

2−1 Computed by a multiplication gate centered on previous row.
... A block of gates for raising to power −t.

g−t(t2−1)

gt(t
2−1) Computed by inversion gate centered on this row.
f ′′ Assured by copy constraints.

f ′′gt(t
2−1) Computed by a multiplication gate centered on previous row.

gp
3

Assured by copy constraints.
f ′′gp

3

gt(t
2−1) Computed by a multiplication gate centered on previous row.

gt
2−1 Assured by copy constraints.

(gt
2−1)p

2

Computed by a unary operation gate centered on previous row.
f ′′gp

3

gt(t
2−1) Assured by copy constraints.

f ′′gp
3

(gt
2−1)p

2

gt(t
2−1) Computed by a multiplication gate centered on previous row.

g−t Assured by copy constraints.
gt Computed by inversion gate centered on previous row.

(gt)p Computed by a unary operation gate centered on previous row.
f ′′gp

3

(gt
2−1)p

2

gt(t
2−1) Assured by copy constraints.

f ′′gp
3

(gt
2−1)p

2

(gt)pgt(t
2−1) Computed by a multiplication gate centered on previous row.
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• For i from start to start+ 5:
– Ti+1,0 = T 7

i,0 · MDS[0][0] + T 7
i,1 · MDS[0][1] + T 7

i,2 · MDS[0][2] + RCi+1,0

– Ti+1,1 = T 7
i,0 · MDS[1][0] + T 7

i,1 · MDS[1][1] + T 7
i,2 · MDS[1][2] + RCi+1,1

– Ti+1,2 = T 7
i,0 · MDS[2][0] + T 7

i,1 · MDS[2][1] + T 7
i,2 · MDS[2][2] + RCi+1,2

Notice that the constraints above include the state from the next row (start+ 5).

4.1 Proof Layer

The third layer is constructed using the same primitive components as the second layer. The key
distinction lies in utilizing the second layer as input for the third layer. As a result, the final proof is
characterized by a reduced verification cost, facilitated by employing a Keccak for transcript and employing
grinding techniques.

5 Opcodes Gates for zkLLVM Low-Level Circuit

We refrain from creating subcircuits for individual opcodes. Instead, we leverage the flexibility of the
gates technique within zkLLVM to map the logic of opcodes onto the EVM circuit. This mapping is
accomplished by employing general non-native arithmetics, allowing for the integration of finite fields and
256 bits aritmetic. Our non-native approach encompasses support for all primitive operations, and even
more complex functionalities can be expressed using this comprehensive set. Notably, memory-related
opcodes are handled akin to the PSE solution, utilizing lookup constraints. The order of lookup constraints
and the placement of corresponding cells in the execution trace are managed by zkLLVM.

Flexible Gates The current section gives a brief description of the Flexible Gate technique. This is
one of the optimizations of the underlying Placeholder proof system. The technique allows you to modify
gates and individual gate constraints to provide greater circuit “density”. Since some zkEVM circuits
are generated using the zkLLVM compiler, we must optimize its behavior so that there are as few free
zones in the execution trace as possible. To solve this problem, the compiler, based on the proof system
parameters (number of columns, maximum gate degree, etc.), can combine gates for optimization.

Let {Fd
w} be a trace constraint, which can be expressed in polynomial, permutation and lookup form

such as
Fd

w(Ci,j , Si) = 0, Ci,j ∈ F, Si ∈ {0, 1}.

Let M be a metric function, which take as input a set of the primitives {P} and return {Fd
w} as output.

Thus, Flexible circuits technique has a following algorithm:

1. zkLLVM: computational sequence → {P}.

2. M: {R} → {Fd
w}.

3. Evaluate each primitive Pk for parameters wk, dk, i, jk.

4. Combine all evaluations from previous step in one circuit.

General Non-native Arithmetics Now we present a general mechanism for working with non-native
arithmetics. This approach is based on the Chinese Remainder Theorem (CRT). This theorem asserts
that we can calculate an equation modulo two prime numbers and be confident that it holds for the
multiplication of these numbers.

Let Fn be an non-native field, where n is a some power of two. In order to provide computations over
non-native Fn we use constraints over native field Fk. Without loss of generality, let k < n be a prime
number. We can always find such a k that meets these requirements. Additionally, we compute an integer
t, such that 2t · k ≥ n2 + n. Now, we want to check equality:

a · b = n · q + r, r = a · b mod n

Each positive integer a, b, q, r is divided into N limbs, where the sizes of limbs are 20 bits respectively,
where a chunk bitslast < 20 is the least significant bits. To check that a, b, q and r are less than p, we use
range proofs. For this purpose, a lookup table with one column is used. The first column contains all
integers in the range [0, 220).
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1. The limbs a0, a1, ..., aN−1 are range-constrained by the lookup table.

2. The value aN−1 · 220−bitslast are range-constrained by the lookup table.

Then we constrain the equation modulo n and 2t as follows:

1. (a · b) mod k = (p · q + r) mod k

2. The new limbs for a, b, q, and r are constructed in such a way that they do not exceed 1/4 t. Let
a′0, a

′
1, a

′
2, a

′
3, b

′
0, b

′
1, b

′
2, b

′
3, q

′
0, q

′
1, q

′
2, q

′
3, r

′
0, r

′
1, r

′
2, r

′
3 be the new limbs.

3. Let p′ be −p mod 2t. The limbs p′0, p
′
1, p

′
2 and p′3 are circuits parameters.

4. Compute the following limbs:

(a) t0 = a′0 · b′0 + p′0 · q′0
(b) t1 = a′1 · b′0 + a′0 · b′1 + p′0 · q′1 + p′1 · q′0
(c) t2 = a′2 · b′0 + a′0 · b′2 + a′1 · b′1 + p′0 · q′2 + p′2 · q′0 + p′1 · q′1
(d) t3 = a′3 · b′0 + a′0 · b′3 + a′1 · b′2 + a′2 · b′1 + p′0 · q′3 + p′3 · q′0 + p′1 · q′2 + p′2 · q′1
(e) t4 = a′3 · b′1 + a′1 · b′3 + a′2 · b′2 + p′1 · q′3 + p′3 · q′1 + p′2 · q′2

5. u0 = t0 − r′0 + t1 · 21/4t − r′1 · 21/4t = v0 · 21/2t

6. u1 = t2 − r′2 + t3 · 21/4t − r′3 · 21/4t + t4 · 21/2t + v0 = v1 · 21/2t+Obits , where Obits is the number of
overflow bits.

7. The value v0 has to be less than 21/4t and v1 ≤ 21/4t. So, we add range constraints for v0 and v1.

The algorithm outlined above can be adapted for any primitive operation in a similar way. Furthermore,
it can be transformed to operate with non-native prime fields by employing a more intricate lookup table.
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A Opcodes

0s: Stop and Arithmetic Operations
All arithmetic is modulo 2256 unless otherwise noted. The zero-th power of zero 00 is defined to be one.

Value Mnemonic δ α Description

0x00 STOP 0 0 Halts execution.

0x01 ADD 2 1 Addition operation.
µ′

s[0] ≡ µs[0] + µs[1]

0x02 MUL 2 1 Multiplication operation.
µ′

s[0] ≡ µs[0]× µs[1]

0x03 SUB 2 1 Subtraction operation.
µ′

s[0] ≡ µs[0]− µs[1]

0x04 DIV 2 1 Integer division operation.

µ′
s[0] ≡

{
0 if µs[1] = 0

⌊µs[0]÷ µs[1]⌋ otherwise

0x05 SDIV 2 1 Signed integer division operation (truncated).

µ′
s[0] ≡


0 if µs[1] = 0

−2255 if µs[0] = −2255 ∧ µs[1] = −1
sgn(µs[0]÷ µs[1])⌊|µs[0]÷ µs[1]|⌋ otherwise

Where all values are treated as two’s complement signed 256-bit
integers.
Note the overflow semantic when −2255 is negated.

0x06 MOD 2 1 Modulo remainder operation.

µ′
s[0] ≡

{
0 if µs[1] = 0

µs[0] mod µs[1] otherwise

0x07 SMOD 2 1 Signed modulo remainder operation.

µ′
s[0] ≡

{
0 if µs[1] = 0

sgn(µs[0])(|µs[0]| mod |µs[1]|) otherwise
Where all values are treated as two’s complement signed 256-bit
integers.

0x08 ADDMOD 3 1 Modulo addition operation.

µ′
s[0] ≡

{
0 if µs[2] = 0

(µs[0] + µs[1]) mod µs[2] otherwise
All intermediate calculations of this operation are not subject to
the 2256

modulo.

0x09 MULMOD 3 1 Modulo multiplication operation.

µ′
s[0] ≡

{
0 if µs[2] = 0

(µs[0]× µs[1]) mod µs[2] otherwise
All intermediate calculations of this operation are not subject to
the 2256

modulo.

0x0a EXP 2 1 Exponential operation.
µ′

s[0] ≡ µs[0]
µs[1]

0x0b SIGNEXTEND2 1 Extend length of two’s complement signed integer.
∀i ∈ [0..255] : µ′

s[0]i ≡{
µs[1]t if i ⩽ t where t = 256− 8(µs[0] + 1)

µs[1]i otherwise
µs[x]i gives the ith bit (counting from zero) of µs[x]
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10s: Comparison & Bitwise Logic Operations
Value Mnemonic δ α Description

0x10 LT 2 1 Less-than comparison.

µ′
s[0] ≡

{
1 if µs[0] < µs[1]

0 otherwise

0x11 GT 2 1 Greater-than comparison.

µ′
s[0] ≡

{
1 if µs[0] > µs[1]

0 otherwise

0x12 SLT 2 1 Signed less-than comparison.

µ′
s[0] ≡

{
1 if µs[0] < µs[1]

0 otherwise
Where all values are treated as two’s complement signed 256-bit
integers.

0x13 SGT 2 1 Signed greater-than comparison.

µ′
s[0] ≡

{
1 if µs[0] > µs[1]

0 otherwise
Where all values are treated as two’s complement signed 256-bit
integers.

0x14 EQ 2 1 Equality comparison.

µ′
s[0] ≡

{
1 if µs[0] = µs[1]

0 otherwise

0x15 ISZERO 1 1 Simple not operator.

µ′
s[0] ≡

{
1 if µs[0] = 0

0 otherwise

0x16 AND 2 1 Bitwise AND operation.
∀i ∈ [0..255] : µ′

s[0]i ≡ µs[0]i ∧ µs[1]i

0x17 OR 2 1 Bitwise OR operation.
∀i ∈ [0..255] : µ′

s[0]i ≡ µs[0]i ∨ µs[1]i

0x18 XOR 2 1 Bitwise XOR operation.
∀i ∈ [0..255] : µ′

s[0]i ≡ µs[0]i ⊕ µs[1]i

0x19 NOT 1 1 Bitwise NOT operation.

∀i ∈ [0..255] : µ′
s[0]i ≡

{
1 if µs[0]i = 0

0 otherwise

0x1a BYTE 2 1 Retrieve single byte from word.
∀i ∈ [0..255] : µ′

s[0]i ≡{
µs[1](i−248+8µs[0])

if i ≥ 248 ∧ µs[0] < 32

0 otherwise
For the Nth byte, we count from the left (i.e. N=0 would be the
most significant
in big endian).

0x1b SHL 2 1 Left shift operation.
µ′

s[0] ≡ (µs[1]× 2µs[0]) mod 2256

0x1c SHR 2 1 Logical right shift operation.
µ′

s[0] ≡ ⌊µs[1]÷ 2µs[0]⌋

0x1d SAR 2 1 Arithmetic (signed) right shift operation.
µ′

s[0] ≡ ⌊µs[1]÷ 2µs[0]⌋
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Where µ′
s[0] and µs[1] are treated as two’s complement signed

256-bit integers,
while µs[0] is treated as unsigned.

20s: KECCAK256

Value Mnemonic δ α Description

0x20 KECCAK256 2 1 Compute Keccak-256 hash.
µ′

s[0] ≡ KEC(µm[µs[0] . . . (µs[0] + µs[1]− 1)])

µ′
i ≡M(µi,µs[0],µs[1])

30s: Environmental Information

Value Mnemonic δ α Description

0x30 ADDRESS 0 1 Get address of currently executing account.
µ′

s[0] ≡ Ia

0x31 BALANCE 1 1 Get balance of the given account.

µ′
s[0] ≡

{
σ[µs[0] mod 2160]b if σ[µs[0] mod 2160] ̸= ∅
0 otherwise

A′
a ≡ Aa ∪ {µs[0] mod 2160}

0x32 ORIGIN 0 1 Get execution origination address.
µ′

s[0] ≡ Io
This is the sender of original transaction; it is never an account
with
non-empty associated code.

0x33 CALLER 0 1 Get caller address.
µ′

s[0] ≡ Is
This is the address of the account that is directly responsible for
this execution.

0x34 CALLVALUE 0 1 Get deposited value by the instruction/transaction responsible for
this execution.
µ′

s[0] ≡ Iv

0x35 CALLDATALOAD1 1 Get input data of current environment.
µ′

s[0] ≡ Id[µs[0] . . . (µs[0] + 31)] with Id[x] = 0 if x ⩾ ∥Id∥
This pertains to the input data passed with the message call
instruction or transaction.

0x36 CALLDATASIZE0 1 Get size of input data in current
environment.
µ′

s[0] ≡ ∥Id∥
This pertains to the input data passed with the message call
instruction or transaction.

0x37 CALLDATACOPY3 0 Copy input data in current environment to memory.
∀i ∈ {0 . . .µs[2] − 1} : µ′

m[µs[0] + i] ≡{
Id[µs[1] + i] if µs[1] + i < ∥Id∥
0 otherwise

The additions in µs[1] + i are not subject to the 2256 modulo.
µ′

i ≡M(µi,µs[0],µs[2])

This pertains to the input data passed with the message call
instruction
or transaction.

0x38 CODESIZE 0 1 Get size of code running in current environment.
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µ′
s[0] ≡ ∥Ib∥

0x39 CODECOPY 3 0 Copy code running in current environment to memory.
∀i ∈ {0 . . .µs[2] − 1} : µ′

m[µs[0] + i] ≡{
Ib[µs[1] + i] if µs[1] + i < ∥Ib∥
STOP otherwise

µ′
i ≡M(µi,µs[0],µs[2])

The additions in µs[1] + i are not subject to the 2256 modulo.

0x3a GASPRICE 0 1 Get price of gas in current environment.
This is the effective gas price defined in section ??.
Note that as of the London hard fork, this value no longer
represents what is received by the miner,
but rather just what is paid by the sender.
µ′

s[0] ≡ Ip

0x3b EXTCODESIZE1 1 Get size of an account’s code.

µ′
s[0] ≡

{
∥b∥ if σ[µs[0] mod 2160] ̸= ∅
0 otherwise

where KEC(b) ≡ σ[µs[0] mod 2160]c
A′

a ≡ Aa ∪ {µs[0] mod 2160}

0x3c EXTCODECOPY4 0 Copy an account’s code to memory.
∀i ∈ {0 . . .µs[3] − 1} : µ′

m[µs[1] + i] ≡{
b[µs[2] + i] if µs[2] + i < ∥b∥
STOP otherwise

where KEC(b) ≡ σ[µs[0] mod 2160]c
We assume b ≡ () if σ[µs[0] mod 2160] = ∅.
µ′

i ≡M(µi,µs[1],µs[3])

The additions in µs[2] + i are not subject to the 2256 modulo.
A′

a ≡ Aa ∪ {µs[0] mod 2160}

0x3d RETURNDATASIZE0 1 Get size of output data from the previous call from the current
environment.
µ′

s[0] ≡ ∥µo∥

0x3e RETURNDATACOPY3 0 Copy output data from the previous call to memory.
∀i ∈ {0 . . .µs[2] − 1} : µ′

m[µs[0] + i] ≡{
µo[µs[1] + i] if µs[1] + i < ∥µo∥
0 otherwise

The additions in µs[1] + i are not subject to the 2256 modulo.
µ′

i ≡M(µi,µs[0],µs[2])

0x3f EXTCODEHASH1 1 Get hash of an account’s code.

µ′
s[0] ≡

{
0 if DEAD(σ,µs[0] mod 2160)

σ[µs[0] mod 2160]c otherwise
A′

a ≡ Aa ∪ {µs[0] mod 2160}

40s: "Block" Information

Value Mnemonic δ α Description

0x40 BLOCKHASH1 1 Get the hash of one of the 256 most recent complete replication
packets.
µ′

s[0] ≡ P (IHp
,µs[0], 0)

where P is the hash of a replication packet of a particular number,
up to a maximum
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age. 0 is left on the stack if the looked for replication packet
number is greater than or
equal to the current replication packet number or more than 256
replication packets behind the current replication packet.

P (h, n, a) ≡


0 if n > Hi ∨ a = 256 ∨ h = 0

h if n = Hi

P (Hp, n, a+ 1) otherwise
and we assert the header H can be determined from its hash h

unless h is zero
(as is the case for the parent hash of the genesis replication packet).

0x41 COINBASE 0 1 Get the current replication packet’s beneficiary address.
µ′

s[0] ≡ IHc

0x42 TIMESTAMP0 1 Get the current replication packet’s timestamp.
µ′

s[0] ≡ IHs

0x43 NUMBER 0 1 Get the current replication packet’s number.
µ′

s[0] ≡ IHi

0x44 DIFFICULTY0 1 Get the current replication packet’s difficulty.
µ′

s[0] ≡ IHd

0x45 GASLIMIT 0 1 Get the current replication packet’s gas limit.
µ′

s[0] ≡ IHl

0x46 CHAINID 0 1 Get the chain ID.
µ′

s[0] ≡ β

0x47 SELFBALANCE0 1 Get balance of currently executing account.
µ′

s[0] ≡ σ[Ia]b

0x48 BASEFEE 0 1 Get the current replication packet’s base fee.
µ′

s[0] ≡ IHf

50s: Stack, Memory, Storage and Flow Operations

Value Mnemonic δ α Description

0x50 POP 1 0 Remove item from stack.

0x51 MLOAD 1 1 Load word from memory.
µ′

s[0] ≡ µm[µs[0] . . . (µs[0] + 31)]

µ′
i ≡ max(µi, ⌈(µs[0] + 32)÷ 32⌉)

The addition in the calculation of µ′
i is not subject to the 2256

modulo.

0x52 MSTORE 2 0 Save word to memory.
µ′

m[µs[0] . . . (µs[0] + 31)] ≡ µs[1]

µ′
i ≡ max(µi, ⌈(µs[0] + 32)÷ 32⌉)

The addition in the calculation of µ′
i is not subject to the 2256

modulo.

0x53 MSTORE8 2 0 Save byte to memory.
µ′

m[µs[0]] ≡ (µs[1] mod 256)

µ′
i ≡ max(µi, ⌈(µs[0] + 1)÷ 32⌉)

The addition in the calculation of µ′
i is not subject to the 2256

modulo.

0x54 SLOAD 1 1 Load word from storage.
µ′

s[0] ≡ σ[Ia]s[µs[0]]

A′
K ≡ AK ∪ {(Ia,µs[0])}

26



Dra
ft

CSLOAD(µ, A, I) ≡

{
Gwarmaccess if (Ia,µs[0]) ∈ AK

Gcoldsload otherwise

0x55 SSTORE 2 0 Save word to storage.
σ′[Ia]s[µs[0]] ≡ µs[1]

A′
K ≡ AK ∪ {(Ia,µs[0])}

CSSTORE(σ,µ) and A′
r are specified by EIP-2200 as follows.

We remind the reader that the checkpoint (“original”) state σ0 is
the state
if the current transaction were to revert.
Let v0 = σ0[Ia]s[µs[0]] be the original value of the storage slot.
Let v = σ[Ia]s[µs[0]] be the current value.
Let v′ = µs[1] be the new value.
Then:

CSSTORE(σ,µ, A, I) ≡

{
0 if (Ia,µs[0]) ∈ AK

Gcoldsload otherwise

+


Gwarmaccess if v = v′ ∨ v0 ̸= v

Gsset if v ̸= v′ ∧ v0 = v ∧ v0 = 0

Gsreset if v ̸= v′ ∧ v0 = v ∧ v0 ̸= 0

A′
r ≡ Ar+


Rsclear if v ̸= v′ ∧ v0 = v ∧ v′ = 0

rdirtyclear + rdirtyreset if v ̸= v′ ∧ v0 ̸= v

0 otherwise
where

rdirtyclear ≡


−Rsclear if v0 ̸= 0 ∧ v = 0

Rsclear if v0 ̸= 0 ∧ v′ = 0

0 otherwise

rdirtyreset ≡


Gsset −Gwarmaccess if v0 = v′ ∧ v0 = 0

Gsreset −Gwarmaccess if v0 = v′ ∧ v0 ̸= 0

0 otherwise

0x56 JUMP 1 0 Alter the program counter.
JJUMP(µ) ≡ µs[0]

This has the effect of writing said value to µpc. See section ??.

0x57 JUMPI 2 0 Conditionally alter the program counter.

JJUMPI(µ) ≡

{
µs[0] if µs[1] ̸= 0

µpc + 1 otherwise
This has the effect of writing said value to µpc. See section ??.

0x58 PC 0 1 Get the value of the program counter prior to the increment
corresponding to this instruction.
µ′

s[0] ≡ µpc

0x59 MSIZE 0 1 Get the size of active memory in bytes.
µ′

s[0] ≡ 32µi

0x5a GAS 0 1 Get the amount of available gas, including the corresponding
reduction
for the cost of this instruction.
µ′

s[0] ≡ µg

0x5b JUMPDEST 0 0 Mark a valid destination for jumps.
This operation has no effect on machine state during execution.

60s & 70s: Push Operations
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Value Mnemonic δ α Description

0x60 PUSH1 0 1 Place 1 byte item on stack.
µ′

s[0] ≡ c(µpc + 1)

where c(x) ≡

{
Ib[x] if x < ∥Ib∥
0 otherwise

The bytes are read in line from the program code’s bytes array.
The function c ensures the bytes default to zero if they extend
past the limits.
The byte is right-aligned (takes the lowest significant place in big
endian).

0x61 PUSH2 0 1 Place 2-byte item on stack.
µ′

s[0] ≡ c
(
(µpc + 1) . . . (µpc + 2)

)
with c(x) ≡ (c(x0), ..., c(x∥x∥−1)) with c as defined as above.
The bytes are right-aligned (takes the lowest significant place in
big endian).

...
...

...
...

...

0x7f PUSH32 0 1 Place 32-byte (full word) item on stack.
µ′

s[0] ≡ c
(
(µpc + 1) . . . (µpc + 32)

)
where c is defined as above.
The bytes are right-aligned (takes the lowest significant place in
big endian).

80s: Duplication Operations

Value Mnemonic δ α Description

0x80 DUP1 1 2 Duplicate 1st stack item.
µ′

s[0] ≡ µs[0]

0x81 DUP2 2 3 Duplicate 2nd stack item.
µ′

s[0] ≡ µs[1]

...
...

...
...

...

0x8f DUP16 16 17 Duplicate 16th stack item.
µ′

s[0] ≡ µs[15]

90s: Exchange Operations

Value Mnemonic δ α Description

0x90 SWAP1 2 2 Exchange 1st and 2nd stack items.
µ′

s[0] ≡ µs[1]

µ′
s[1] ≡ µs[0]

0x91 SWAP2 3 3 Exchange 1st and 3rd stack items.
µ′

s[0] ≡ µs[2]

µ′
s[2] ≡ µs[0]

...
...

...
...

...

0x9f SWAP16 17 17 Exchange 1st and 17th stack items.
µ′

s[0] ≡ µs[16]

µ′
s[16] ≡ µs[0]

a0s: Logging Operations
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For all logging operations, the state change is to append an additional log entry on to the substate’s log series:
A′

l ≡ Al · (Ia, t,µm[µs[0] . . . (µs[0] + µs[1]− 1)])

and to update the memory consumption counter:
µ′

i ≡M(µi,µs[0],µs[1])

The entry’s topic series, t, differs accordingly:

Value Mnemonic δ α Description

0xa0 LOG0 2 0 Append log record with no topics.
t ≡ ()

0xa1 LOG1 3 0 Append log record with one topic.
t ≡ (µs[2])

...
...

...
...

...

0xa4 LOG4 6 0 Append log record with four topics.
t ≡ (µs[2],µs[3],µs[4],µs[5])

f0s: System operations

Value Mnemonic δ α Description

0xf0 CREATE 3 1 Create a new account with associated code.
i ≡ µm[µs[1] . . . (µs[1] + µs[2]− 1)]

ζ ≡ ∅

(σ′, g′, A′, z,o) ≡


Λ(σ∗, A, Ia, Io, L(µg), Ip,µs[0], i, Ie + 1, ζ, Iw) if µs[0] ⩽ σ[Ia]b

∧ Ie < 1024(
σ, L(µg), A, 0, ()

)
otherwise

σ∗ ≡ σ except σ∗[Ia]n = σ[Ia]n + 1

µ′
g ≡ µg − L(µg) + g′

µ′
s[0] ≡ x

where x = 0 if z = 0, i.e., the contract creation process failed, or
Ie = 1024

(the maximum call depth limit is reached) or µs[0] > σ[Ia]b
(balance of the caller
is too low to fulfil the value transfer); and otherwise x =

ADDR(Ia,σ[Ia]n, ζ, i), the
address of the newly created account (??).
µ′

i ≡M(µi,µs[1],µs[2])

µ′
o ≡

{
() if z = 1

o otherwise
Thus the operand order is: value, input offset, input size.

0xf1 CALL 7 1 Message-call into an account.
i ≡ µm[µs[3] . . . (µs[3] + µs[4]− 1)]

(σ′, g′, A′, x,o) ≡


Θ(σ, A∗, Ia, Io, t, t, CCALLGAS(σ,µ, A),

Ip,µs[2],µs[2], i, Ie + 1, Iw)

if µs[2] ⩽ σ[Ia]b ∧
Ie < 1024

(σ, CCALLGAS(σ,µ, A), A, 0, ()) otherwise
n ≡ min({µs[6], ∥o∥})
µ′

m[µs[5] . . . (µs[5] + n− 1)] = o[0 . . . (n− 1)]

µ′
o = o

µ′
g ≡ µg − CCALLGAS(σ,µ, A) + g′

µ′
s[0] ≡ x

A∗ ≡ A except A∗
a ≡ Aa ∪ {t}

t ≡ µs[1] mod 2160

µ′
i ≡M(M(µi,µs[3],µs[4]),µs[5],µs[6])

where x = 0 if the code execution for this operation failed, or if
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µs[2] > σ[Ia]b (not enough funds) or Ie = 1024 (call depth limit
reached); x = 1

otherwise.
Thus the operand order is: gas, to, value, in offset, in size, out
offset, out size.
CCALL(σ,µ, A) ≡ CGASCAP(σ,µ, A) + CEXTRA(σ,µ, A)

CCALLGAS(σ,µ, A) ≡

{
CGASCAP(σ,µ, A) +Gcallstipend if µs[2] ̸= 0

CGASCAP(σ,µ, A) otherwise

CGASCAP(σ,µ, A) ≡

{
min{L(µg − CEXTRA(σ,µ, A)),µs[0]} if µg ≥ CEXTRA(σ,µ, A)

µs[0] otherwise
CEXTRA(σ,µ, A) ≡ Caaccess(t, A) + CXFER(µ) + CNEW(σ,µ)

CXFER(µ) ≡

{
Gcallvalue if µs[2] ̸= 0

0 otherwise

CNEW(σ,µ) ≡

{
Gnewaccount if DEAD(σ, t) ∧ µs[2] ̸= 0

0 otherwise

0xf2 CALLCODE 7 1 Message-call into this account with an alternative account’s code.
Exactly equivalent to CALL except:

(σ′, g′, A′, x,o) ≡


Θ(σ, A∗, Ia, Io, Ia, t, CCALLGAS(σ,µ, A),

Ip,µs[2],µs[2], i, Ie + 1, Iw)

if µs[2] ⩽ σ[Ia]b ∧
Ie < 1024

(σ, CCALLGAS(σ,µ, A), A, 0, ()) otherwise
Note the change in the fourth parameter to the call Θ from the
2nd stack value
µs[1] (as in CALL) to the present address Ia. This means that the
recipient is in
fact the same account as at present, simply that the code is
overwritten.

0xf3 RETURN 2 0 Halt execution returning output data.
HRETURN(µ) ≡ µm[µs[0] . . . (µs[0] + µs[1]− 1)]

This has the effect of halting the execution at this point with
output defined.
See section ??.
µ′

i ≡M(µi,µs[0],µs[1])

0xf4 DELEGATECALL6 1 Message-call into this account with an alternative account’s code,
but
persisting the current values for sender and value.
Compared with CALL, DELEGATECALL takes one fewer argu-
ments. The
omitted argument is µs[2]. As a result, µs[3], µs[4], µs[5] and
µs[6] in the
definition of CALL should respectively be replaced with µs[2],
µs[3], µs[4] and
µs[5]. Otherwise it is equivalent to CALL except:

(σ′, g′, A′, x,o) ≡


Θ(σ, A∗, Is, Io, Ia, t, CCALLGAS(σ,µ, A),

Ip, 0, Iv, i, Ie + 1, Iw)
if Ie < 1024

(σ, CCALLGAS(σ,µ, A), A, 0, ()) otherwise
Note the changes (in addition to that of the fourth parameter) to
the second
and ninth parameters to the call Θ.
This means that the recipient is in fact the same account as at
present, simply
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that the code is overwritten and the context is almost entirely
identical.

0xf5 CREATE2 4 1 Create a new account with associated code.
Exactly equivalent to CREATE except:
The salt ζ ≡ µs[3].

0xfa STATICCALL6 1 Static message-call into an account.
Exactly equivalent to CALL except:
The argument µs[2] is replaced with 0.
The deeper argument µs[3], µs[4], µs[5] and µs[6] are respectively
replaced
with µs[2], µs[3], µs[4] and µs[5].
The last argument of Θ is ⊥.

0xfd REVERT 2 0 Halt execution reverting state changes but returning data and
remaining gas.
HRETURN(µ) ≡ µm[µs[0] . . . (µs[0] + µs[1]− 1)]

The effect of this operation is described in (??).
For the gas calculation, we use the memory expansion function,
µ′

i ≡M(µi,µs[0],µs[1])

0xfe INVALID ∅ ∅ Designated invalid instruction.

0xff SELFDESTRUCT1 0 Halt execution and register account for later deletion.
A′

s ≡ As ∪ {Ia}
A′

a ≡ Aa ∪ {r}

σ′[r] ≡


∅ if σ[r] = ∅ ∧ σ[Ia]b = 0

(σ[r]n,σ[r]b + σ[Ia]b,σ[r]s,σ[r]c) if r ̸= Ia

(σ[r]n, 0,σ[r]s,σ[r]c) otherwise

where r = µs[0] mod 2160

σ′[Ia]b = 0

CSELFDESTRUCT(σ,µ) ≡ Gselfdestruct +

{
0 if r ∈ Aa

Gcoldaccountaccess otherwise

+

{
Gnewaccount if DEAD(σ, r) ∧ σ[Ia]b ̸= 0

0 otherwise
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