
Dra
ft

zkLLVM Circuit Compiler

Zero-Knowledge Proof Systems Circuits Compiler.
Nikita Kaskov

=nil; Foundation
nbering@nil.foundation

Mikhail Komarov

=nil; Foundation
nemo@nil.foundation

Mikhail Aksenov

=nil; Foundation
maksenov@nil.foundation

April 6, 2024

Abstract

This document describes zkLLVM toolchain – an LLVM-based high-level programming
languages compiler into provable computations protocols input representations (i.e. zero-
knowledge proof system circuits or fully-homomorphic encryption operations circuits). It
can be used to generate input for any arbitrary zero-knowledge proof system or protocol,
which accepts input data in form of algebraic circuits. Its initial impelemtation is supposed
to be based on top of Placeholder proof system, but is not limited to it.

Such a toolchain, as its usage grows, will allow to build new zk- (zero- knowledge)
projects with minimal effort by reusing prepared set of components, which can always be
extended in the form of a community-driven project.

1 Introduction

Provable computations experience noticeable growth as they allow to decrease trust as-
sumptions toward the execution actor, thus providing a way to build complex application logic.
Unfortunately, most of the ways to define provable logic require to describe the algorithm
via some custom DSL (domain specific language), which significantly decreases zk application
sustainability and upgradability, slows down the implementation and increases time to market
for projects. It also requires to be familiar with the specifics of many different DSLs as each
zk-project has its own.

Based on these reasons zkLLVM circuit compiler project was designed. It is intended to trans-
form arbitrary algorithm implemented in mainstream Turing-complete language into an algebraic
circuit so it further could be used as input by Placeholder proof system [placeholder-spec]
or any other arithmetization-compatible proof system. The compiler is

zkLLVM circuit compiler is implemented as an extension of the LLVM (Low Level Virtual
Machine) project [llvm-website], uses its perfect three-phase compiler design, which allows
to implement a separate compiler backend for the flexible target circuit architecture and get
support of many existing source language frontends with minimal modifications on the frontend
side.

Hereinafter we use Blueprint as the name of algebraic circuit-specific LLVM-compatible
compilation target.

1

mailto:nbering@nil.foundation
mailto:nemo@nil.foundation
mailto:maksenov@nil.foundation

Dra
ft

The compiler toolchain requires a set of circuit components providing arithmetizaion
constraints definition. Current implementation is based on the [zkllvm-blueprint-git] circuit
components library; instead of it, any other components library of required components can be
used.

Full list of required and optional components is given in the appendix. The ultimate goal
of the project is to develop a set of universal interfaces and components witch can be reused
for different purposes. The components set might be extended over time with new custom
components, including, for example, ML-specific functions or cryptographic hashes optimized
for particular target.

In terms of zkLLVM tool-chain, there is no difference between building a zk-Oracle, a
consensus zk-proof or a zk-VM. All of these are being built from the same set of components. If
the set of components is stable and well audited, then the task to insure in the security of the
app is pretty straightforward - only the code in the high-level language requres an audit.

1.1 Short introduction to Placeholder

Placeholder is a zero-knowledge succinct non-interactive argument of knowledge (zk-SNARK)
based on PlonK-style arithmetization. Its internal components, such as commitment schemes
and types of arithmetization, are replaceable and configurable. Low-level Placeholder circuits can

2

Dra
ft

adapt to selected parameters, such as table size, date degree, and lookup options. These qualities
enable the flexible configuration of Placeholder with trade-offs between circuit parameters,
trust assumptions, and efficiency of proof generation. Due to this flexibility, Placeholder can
accommodate particular cases, consistently achieving efficient results.

1.2 Arithmetizations

To prove an algorithm, it needs to be represented in a form compatible with provable
computation protocol. This form is called arithmetization and can be one of those:

• R1CS
• PLONK
• PLONK with Custom Gates
• AIR

Different arithmetizations represent components logic differently. What takes hundreads of
constraints in PLONK arithmetization can take hundreads thousands in R1CS. But in terms
of zkLLVM no higher level are being affected by the arithmetization and do not require any
changes when arithmetization changes.

1.3 Plonk Arithmetization

Here we describe our instantiation of PLONK with custom gates.

The computation sequence that needs to be proved is represented as Circuit. The Circuit
is defined by fixed parameters and various sets of constraints (Basic, Copy, Lookup) on the
Execution trace of the computation. Note that it is assumed that the Verifier does not know the
entire Execution trace. A more formal description is as follows.

The Execution trace stores values used during computations. It is represented by a rectangular
matrix TTT (which we’ll refer as Table) with Nrows rows and Ncol columns:

TTT =
[
τT
0 , . . . , τT

Ncol−1

]
.

There are 5 types of columns TTT .

• Witness columns contain witness input and intermediate calculations.
Witness columns differ between proof instances (because they depend on input). They are
not known to the verifier. We denote witness columns by w = (w0, . . . ,wNwt−1) where
Nwt ∈ N, wi ∈ FNrows for i = 0, . . . ,Nwt − 1.

• Public columns contain public input for computation.
Public Columns differ between proof instances (because they depend on input). They
are known to the verifier. We denote public columns by s = (s0, . . . , sNpi−1) where
Npi ∈ N, si ∈ FNrows for i = 0, . . . ,Npi − 1.

• Constant columns contain circuit-depended data.
Constant columns do not differ between proof instances. They are known to the verifier.
We denote constant columns by c = (c0, . . . , cNcn−1) where Ncn ∈ N, ci ∈ FNrows for
i = 0, . . . ,Ncn − 1.

• Selector columns define which rows of the Table the basic constraint is applied.
Selectors’ values can be only ones or zeroes. We denote selector columns by q =

(q0, . . . , qNsl−1) where Nsl ∈ N, qi ∈ {0, 1}Nrows for i = 0, . . . ,Nsl − 1.
• Lookup columns define tables for membership testing. We denote lookup columns by
l = (l0, . . . , lNlk−1) where Nlk ∈ N, li ∈ Fp

Nrows for i = 0, . . . ,Nlk − 1.

3

Dra
ft

Assume without loss of generality that

TTT =
[
qT
0 , . . . , q

T
Nsl−1, l

T
0 , . . . , l

T
Nlk−1, c

T
0 , . . . , c

T
Ncn−1, s

T
0 , . . . , s

T
Npi−1,w

T
0 , . . . ,w

T
Nwt−1

]
,

where Nsl + Nlk + Ncn + Npi + Nwt = Ncol (see figure 1).

Figure 1: Structure of execution trace table TTT

Sets of constraints define relationships between values of TTT .

• Basic constraints are expressions for table values of a certain row (and possibly several
adjacent ones).
Let o – set of offsets for the row indices involved in the constraint. Usually, o = {−1, 0, 1}.
The j-th constraint (0 ≤ j < Cbs) is given in the form of a multivariate polynomial C′

j of
total degree Cdg over the table values:

C′
j({w0,i+o′}o′∈o, . . . , {wNwt−1,i+o′}o′∈o) = 0, where i – number of row, i ∈ [Nrows] (1)

An example of a basic constraint could be the following:

wj,i ·wj+1,i +wj+1,i+1 − 1 = 0. (2)

Selectors are used to include/exclude a Basic Constraint check to/from the Row. Selectors
are included as a part of the assertion to do this. A set of Basic Constraints used with the
same Selector is called Gate. A gate may contain one or more constraints. Each Row has
to satisfy all Gates of the Circuit.

• Copy constraints defines equality assertions between Cells.
Such constraints have following form TTT i,j = TTT i′,j′ .

• Lookup constraints assert that the chosen tuples of cells of the Table are equal to some
rows in lookup table L.
Note that Lookup Constraint does not define the precise place of the tuple in the Lookup
Table. It is the main difference between Lookup and Copy constraints. Such constraints
have following form (TTT i,j ,TTT i+1,j ,TTT i+2,j+1) ∈ L.

In order to arithmetize basic constraints we need to define how gates univariate polynomials
are constructed from constraints. Remind that gates contains a set of constraints with the same
selector.

4

Dra
ft

In practice, the table with Nrows rows is padded to get the number of rows n = 2d for some
d ∈ N.

Let H ⊆ F∗
p – cyclic group with generator ζ: H = {ζ0, ..., ζn−1}. The bijection [n] → H

make it possible to consider τi as values of some polynomial on evaluation domain H. For each
table column we define interpolant polynomial from F<n

p [X] using Lagrange basis. For j-th
witness column j ∈ [Nwt] we have

wj(x) =

n−1∑
i=0

wj,i · Li(x).

Selector {si(x)}, constant {ci(x)}, lookup-tables {li(x)} and public input {si(x)} polynomials
are given analogously.

Each constraint C′ (see equation 1) may be written as polynomial

Cj(X) = C′
j({wj(ζ

o′ ·X)}o′∈o, j∈[Nwt]), X ∈ H.

Then example 2 has the following form wj(ζ
i) · wj+1(ζ

i) + wj+1(ζ
i+1)− 1 = 0.

For constraint polynomials C0, . . . , Ck−1 used in i-th gate and corresponding random challenge
θi, we can represent i-th gate as:

Gi(X) = qi(X) · (θ0i C0(X) + · · ·+ θk−1
i Ck−1(X)).

For details on Copy and Lookup constraints arithmetization, we refer the reader to sections
the Placeholder specification document.

2 SDKs and Frontend

2.1 Frontend

Since zkLLVM project is based on the LLVM, it is possible to use it with different frontends.
The only required frontend features are custom types (such as Galois field elements and
multiprecision integer number) and intrinsics support. Full list of custom types can be found in
the IR specification section 3.1.

2.1.1 SDKs

Time-consuming provable computations algorithms implementations mostly take place when
some advanced mathematics apears. Common use-cases include:

• Cryptographic signatures, ciphers and hashes.
• Matrix arithmetic.
• Provable random generators.
• Key derivation function.
• Verifiable delay functions.
• ML and data analysis funcitons

Since such logic is commonly-used and many of these algorithms operate with specific data
types, it makes sence to put them all in the SDK by implementing with use of types usages
corresponding to zkLLVM IR custom types 3.1.

For C++ code such an SDK is crypto3 cryptography library [crypto3-suite-git], which
contains a wide list of compatible with zkLLVM advanced mathematics algorithms implementa-
tions.

5

Dra
ft

3 Intermediate representation

3.1 Custom types support

The following types assumed to be defined in the IR to represent types, which can be
efficently operated by Blueprint target instructions:

3.2 Galois field element types

Galois field element type for all supported by algebra [crypto3-algebra-git] field types.

Galois field element type represents arithmetic logic by some prime number, such as BLS12-
381 or BN-128 base fields.

3.3 Multiprecision modular number types

Multiprecision modular number is a fixed-precision type for modular arithmetic. It has to
support numbers by modulus with bitness higher than 128 bits.

Since Galois field by a prime number has similar behaviour as modular number arithmetic
by the modulus of this prime number, it might make sence to define multiprecision modular
number type only for some common use-cases, which are not Galois fields. List of common is to
be defined and can include different powers of two.

3.4 Curve group element types

zkLLVM IR has to include curve group element types for all supported by algebra
[crypto3-algebra-git] curves types, for all forms and coordinates. Forms and coordinates
description can be found in [hyperelliptic].

3.5 Multiprecision integer types

Multiprecision integral number type for extended bitness. For example, we need uint256 to
efficiently represent EVM-compatible instructions.

4 Blueprint Assigner

Blueprint assigner emits gates list and assignment table in a form described in 1.2.

It uses components descriptions from blueprint module [crypto3-blueprint-git], which
define constraints logic for every instruction, and contain information about assignments emiting.
Each component follows trait described in the section below.

4.1 Assigner target parameters

Arithmetization parameters are hihgly tunable and, depending on the particular use case, it
may be required to have the emited circuit being limited by some metric, since some circuit
params directly affect the computational complexity of a Placeholder prover later 1.1. For
PLONK subtarget it may be limitation by amount of witness Nw or constant Nc columns, or
by assignment rows amount Nrows.

6

Dra
ft

Such limitations are crucial for the instruction emition and assignment generation processes,
since they directly affect physical variables allocation and possible late optimizations.

Common subtargets description for PLONK arithmetization may look this way 1.3:

• Nw ≤ 15 : Witness amount Nw for every gate and the whole circuit table (a.k.a. witness
columns amount) is not higher than 15, other columns amounts are not limited. Rows
amount is not limited.

• Nw ≤ 9 : Witness amount Nw for every gate and the whole circuit table (a.k.a. witness
columns amount) is not higher than 9, other columns amounts are not limited. Rows
amount is not limited.

• ∀c ∈ {constraints(g)|g ∈ {Gates}} : degree(c) ≤ n : Constraints degree in circuit gates
is not higher than some predefined n.

4.2 Blueprint field

Since blueprint component and the whole circuit presents all the logic in form of constraints,
it operates with variables holding values in some Galois field. Such a field is fixed for specific
instance of an arithmetization and within this document we refer to it as Blueprint field.

4.3 Component trait

Component is an internal blueprint entity representing part of circuit logic for a backend
instruction. Each instruction has one corresponding component, but many instructions may be
reflected into one blueprint component. Thus, a component represents some more or less atomic
part of the final circuit.

Component operates with blueprint variables, wich are absolute references to Assignment
table cells. It takes blueprint variables as input and results blueprint variables as output. Since
all the cells of an Assignment table are the elements of a fixed prior to one instance blueprint
field Fbp, all components also operate with of this blueprint field Fbp elements.

Every components has to implement two functions: one for constraints/gates generation,
one for corresponding part of assignment table generation.

4.3.1 PLONK component

In the context of the circuit, PLONK component represents a set of gates. Each gate is a
set of constraints united under common selector. As described in 1.3, selector defines on which
rows of Assignment table should the corresponding constraint be satisfied.

component = {gatei, i = 0, gates_amount},

∀i = 0, gates_amount : gatei = ⟨selector, {constraintj , j = 0, constraints_amounti}⟩

5 Instructions sets

Instructions represent different transforms on IR types 3.1, mostly - arithmetic and logical
ones.

7

Dra
ft

A common design pattern is to also add many intrinsics, such as hashes or signatures.
Nevertheless, in zkLLVM all the complex logic circuits assumed to be built from the given
low-level instructions. This approach is much more difficult to implement, since it requires
to have precise understanding of arithmetization’s features. But it reduces the price of SDKs
extension, making it easier to widen zkLLVM usages.

Though zkLLVM has some extra instructions, which are pretty high-level. Such instructions
mostly include matrix-based algorithms, since they are the most difficult to present in form of
constraints.

During the lowering process every instruction exist in different states for different passes.
Here is full list of such states:

• Blueprint instruction with virtual IR types arguments;
• Blueprint instruction with virtual legalized types arguments;
• Parameterized blueprint instruction with allocated variables arguments;
• List of final circuit gates together with part of assignment table.

5.1 Branch instructions

For some arithmetizations, branch instructions may not present in form of some separate
circuit component.

For PLONK arithmetization unsupported service instructions are:

• JUMP and conditional JUMP;
• CALL

Despite the fact that these instructions are not presented in form of components, they are
being handeled by specific arithmetization features. Thus PLONK subtarget branch instructions
are handeled by selectors logic and require to keep some additional information until final
selectors expansion pass (6.6)

5.2 Blueprint instruction with virtual IR types arguments

5.3 Blueprint instruction with virtual legalized types arguments

Every instruction’s argument is a circuit variable. The value of this variable is always an
element of blueprint field, because it’s used in constraints operating on blueprint field
elements.

8

Dra
ft

5.4 Parameterized blueprint instruction with allocated variables argu-
ments;

5.5 Circuit component gates together with part of assignment table.

6 PLONK lowering passes

6.1 Instruction selection

Pass type: mandatory.
Run-time input: not required.
Input: zkLLVM IR
Ouput: list of Blueprint instructions with virtual IR types arguments

During instruction selection process, LLVM IR instructions are being substituted by Blueprint
instructions, which are supported by particular subtarget.

Since zkLLVM uses a custom version of LLVM IR, some custom types 3.1 are supported
during the Instruction selection process. Instruction selection is mostly based on the type of
argument passed. Thus, arithmetic instructions for field elements are being choosen for LLVM
IR field elements arithmetic, and the same is true for curve element arithmetic.

6.2 Types legalization

Pass type: mandatory.
Run-time input: not required.
Input: list of Blueprint instructions with virtual IR types arguments
Ouput: list of Blueprint instructions with virtual legalized types arguments

The final circuit operates on variables of some blueprint field Fbp element type 1.3. Even the
field element zkLLVM IR internal types must be legalized, if they differ from the blueprint field
Fbp element type (they might be the same – then no legalization is needed). The amount and
algorithm of legalization depends on how does the origin zkLLVM type fit into blueprint field
Fbp element type.

That means, that all instructions input types need to be legalized from zkLLVM IR internal
types (3.1) into Fbp field element type:

9

Dra
ft

6.2.1 Native Galois field element legalization

The simplest case is native Galois Forigin field element legalization. Since this type matches
blueprint field Fbp element type, it does not require any transformations.

Forigin == Fbp ⇒

legalize_it : Forigin → Fbp

6.2.2 Non-native Galois field element legalization

Non-native Galois field element legalization algorithm depends on the bit size of the origin
field type and of the blueprint field Fbp element type.

Forigin ̸= Fbp ⇒

legalize_it : Forigin → {Fbp}n, – n depends on fields relative bit size

6.2.3 Native curve group element in 2-coordinates form legalization

Native curve group element in 2-coordinates form type: two blueprint field Fbp elements.

Caffine
origin , base_field(Corigin) ̸= Fbp ⇒,

legalize_it : Caffine
origin → {Fbp}2

6.2.4 Native curve group element in 3-coordinates form legalization

Native curve group element in 3-coordinates form type: three blueprint field Fbp elements;

Cnon−affine
origin , base_field(Corigin) ̸= Fbp ⇒,

legalize_it : Cnon−affine
origin → {Fbp}3

6.2.5 Non-native curve group element in 2-coordinates form legalization

Non-native curve group element in 2-coordinates (usually affine)form type: ???

Caffine
origin , base_field(Corigin) = Forigin ̸= Fbp ⇒,

legalize_it : Caffine
origin → {Fbp}n, – n depends on fields relative bit size

6.2.6 Non-native curve group element in 3-coordinates form legalization

Non-native curve group element in aby but not affine coordinates form type: ???;

Cnon−affine
origin , base_field(Corigin) = Forigin ̸= Fbp ⇒,

legalize_it : Cnon−affine
origin → {Fbp}n, – n depends on fields relative bit size

10

Dra
ft

6.2.7 Multiprecision integral number legalization

Multiprecision integral number type: ???.

6.3 Instructions de-duplication

Pass type: optimization.
Run-time input: not required.
Input:
Ouput: de-duplicated instanced instructions list.

One of the main advantages of PLONK components is that it’s gates may be reused. Gates
of one component are fixed within the arithmetization and usually different components do
not implement same gates (otherwise such gates may be carry out into a separate reusable
component).

Once proof system and arithmetization params have been choosen (??), set of instruction
instances is fixed.

Write about rows allocation and selectors

If an instruction is used more than once in the code, then these usings require some form of
aggregation. During the de-duplication pass, all repeating instances of an instruction are being
substituted by CALL service instruction.

6.4 Components selectors preprocessing

Pass type: optimization.
Run-time input: not required.
Input: full list of instanced instructions.
Ouput: set of preprocessed selector tables.

Where is columns information saved?

Apart from de-duplication of repeating Blueprint instructions in the generated code,
another form of de-duplication is to be made.

Every used more or less comlex Blueprint component wraps inside itself generation
another underlying components. These wrapped components are also requirred to be taken
into account during result selectors aggregation.

De-duplication is made via used Blueprint components call-graph visiting. All wrapped
instances of the same component (component is defined by used columns set) are being
aggregated into preprocessed selectors.

6.5 Assignment table emission

Pass type: mandatory.
Run-time input: required.
Input:
Ouput: PLONK assignment table.

11

Dra
ft

6.6 Selectors post-processing

Pass type: mandatory.
Run-time input: required.
Input: set of preprocessed selector tables, de-duplicated instanced instructions list.
Ouput: aggregated selector table, full circuit without service.

Some part of preimage code may require run-time input before being transformed into final
circuit:

• Conditional loops;
• Conditional branching (if, switch etc.);

7 Aggregated mode

Placeholder proof system is able to work in aggregated mode, and so does the zkLLVM
toolchain. In that mode, user marks parts of code for different provers in the same manner as
it usually is being done for parallelization. After that, the generated table is being devided
in chunks corresponding to different provers. Apart from the part of the assignment table
corresponding to the prover’s local computations, additional shared part of the table is being
created, where the data intended to be used by all provers are located.

7.1 Assignment table partitioning for aggregated mode

On the higher level (for C++ code) user denotes a new part for aggregation by adding
designated label.

To use the aggregation mode user needs to define which prover should execute each blocks
of code by adding

#pragma zk_multi_prover PROVER_INDEX

PROVER_INDEX may have value [0, MAX_NUM_PROVERS). The pragma affects the
code block enclosed in {...}. For example:

a = b + c ;
#pragma zk_multi_prover 1
{

a = a ∗ 10 ;
a = a + c ∗ 10 ;

}

The code under different labels is being designated to different provers. If no label denotes a
part of code, than the first available prover is designated to this part.

Each one of aggregated provers owns an instance of assignment table, where all the data for
his part of the circuit is being stored.

Following the restriction of the Placeholder proof system, all the inputs and outputs of
aggregated sub-circuits are stored in a public column called shared column. All the data accessed
by more then one prover are also being stored in that shared column.

12

Dra
ft

8 Lowering extra optimizations

8.1 Components adjustment and collocation

Pass type: optimization.
Run-time input: required.

In some cases it makes sense to put several components constraint into one row to use all its
cells. This process is being called collocation within this document. For example purposes, let’s
assume, that on proof system params tuning step (??), 6-witness PLONK arithmetization has
been chosen. Both MNFADD and MNFMULinstructions may be instanced in 3 witness columns form,
so both of them can be putted in one row.

In addition to collocation, components may be adjusted to use more or less columns and rows.
Represented in polynomial form, component’s constraints depend on the number of columns,
which are being used to instance the component. The polynomials for different columns amount
can also differ in the number of variables and in the number of monomials.

Based on the algorithm and the data structures used in it, the components can be adjusted
and then collocated. The algorithm is being implemented as a part of the Blueprint library.

8.2 Loops circification

Pass type: optimization.
Run-time input: required.

There are two types of loops: those which have constant number of iterations and those
which have variable number of iterations dependent on run-time input.

The first type of loops may be easily circified, which means that all loop iterations are being
unrolled and the resulting circuit is being transformed into a circuit without loops.

The loops of second type require more complex approach. The core idea is to circify the
loop with the maximum number of iterations and then to modify the instruction inside the
loop block to be able to break the loop if the condition is unmet. This is being done by adding
additional boolean variable to the loop block, which is being set to 1 if the condition is met
and to 0 otherwise. Then the instruction is being modified to be able to break the loop if the
boolean variable is set to 0.

The instruction modification is being implemented by adding additional multiplier gate to
the instruction, which multiplies the instruction constraint by the boolean variable. Thus, if
the boolean variable is set to 0, the instruction constraint is being multiplied by 0 and the
instruction is being ignored.

8.3 Branching circification

Pass type: optimization.
Run-time input: required.

Same as loops circification, branching circification is being done by unrolling the branch
block and adding additional boolean variable to the block, which is being set to 1 if the condition
is met and to 0 otherwise. Then the instruction is being modified to be able to break the loop if
the boolean variable is set to 0.

13

Dra
ft

Appendices

A PLONK instructions set

Basic instructions represent essential instructions supported by every arithmetization backend
regardless of it’s peculiarities.

A.1 Curve addition

Adds two curve group elements A and B in affine coordinates representation into the result
one C.
CADD v0 v1 . v2 v3 . v4 v5

Input: [v0, v1] - curve group element in affine coordinates A , [v2, v3] - curve group element
in affine coordinates B.

Output: [v4, v5] - curve group element in affine coordinates C.
v0: X coordinate of A
v1: Y coordinate of A
v2: X coordinate of B
v3: Y coordinate of B
v4: X coordinate of C
v5: Y coordinate of C

Circuit

Curve addition is handled by the flexible 15-wire complete addition and doubling circuit
defined as follows:

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i x1 y1 x2 y2 x3 y3 invx1

invx2
invx2−x1

δ λ

Evaluations:

• (x3, y3) = (x1, y1) + (x2, y2)

• inva = a−1, if a ̸= 0, inva = 0 otherwise
• δ = invy1+y2

, if x1 = x2, δ = 0 otherwise
• λ = y2−y1

x2−x1
if x1 ̸= x2, λ =

3x2
1

2y1
, if x1 = x2 andy1 ̸= 0, otherwise λ = 0

Constraints (max degree = 3):

• (w2 − w0) · ((w2 − w0) · w10 − (w3 − w1))

• (1− (w2 − w0) · w8) · (2w1 · w10 − 3w0 · w0)

• (w0 · w2 · w2 − w0 · w2 · w0) · (w10 · w10 − w0 − w2 − w4)

• (w0 · w2 · w2 − w0 · w2 · w0) · (w10 · (w0 − w4)− w1 − w5)

• (w0 · w2 · w3 + w0 · w2 · w1) · (w10 · w10 − w0 − w2 − w4)

• (w0 · w2 · w3 + w0 · w2 · w1) · (w10 · (w0 − w4)− w1 − w5)

• (1− w0 · w6) · (w4 − w2)

• (1− w0 · w6) · (w5 − w3)

14

Dra
ft

• (1− w2 · w7) · (w4 − w0)

• (1− w2 · w7) · (w5 − w1)

• (1− (w2 − w0) · w8 − (w3 + w1) · w9) · w4

• (1− (w2 − w0) · w8 − (w3 + w1) · w9) · w5

Details The gate uses basic group law formulae. Let P = (x1, y1), Q = (x2, y2), R = (x3, y3)

and R = P +Q. Then:

• (x2 − x1) · s = y2 − y1
• s2 = x1 + x2 + x3

• y3 = s · (x1 − x3)− y1

For point doubling R = P + P = 2P :

• 2s · y1 = 3x2
1

• s2 = 2x1 + x3

• y3 = s · (x1 − x3)− y1

A.2 Curve multiplication

Performs scalar multiplication of curve group element A in affine coordinates representation
onto a number B. Result is a curve group element in affine coordinates C.
CMUL v0 v1 . v2 . v3 v4

Input: [v0, v1] - curve group element in affine coordinates A , v2 - integral B.
Output: [v3, v4] - curve group element in affine coordinates C.
v0: X coordinate of A
v1: Y coordinate of A
v2: integral B
v3: X coordinate of C
v4: Y coordinate of C

Circuit

Curve multiplication is handled by the flexible 15-wire variable base scalar multiplication
circuit defined as follows:

For R = [r]T , k = r−2255−1
2 , k = [k0, k1, . . . , kn−1], n = 255 1,

Let u = k − 2254 − tp + 2130 for Vesta curve and u = k − 2254 − tq + 2130 for Pallas curve
u = [u0, u1, . . . , u43], u =

∑42
i=0 ui · 2127−i·3 + u43, ui ∈ {0, . . . , 7}, i = 0, . . . , 42, u43 ∈ {0, 1}:

1. P = [2]T

2. for i from n− 1 to 0:

2.1 Q = ki ? T : −T

2.2 P = P +Q+ P

The first step of the alforithm are verified by the complete addition circuit.
1Using the results from https://arxiv.org/pdf/math/0208038.pdf

15

https://arxiv.org/pdf/math/0208038.pdf

Dra
ft

Row 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i xT yT x0 y0 n = 0 n′ – x1 y1 x2 y2 x3 y3 x4 y4
i+ 1 x5 y5 b0 b1 b2 b3 b4 s0 s1 s2 s3 s4 – – –
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
i+ 58 xT yT x0 y0 n n′ u′ = 0 x1 y1 x2 y2 x3 y3 x4 y4
i+ 59 x5 y5 b0 b1 b2 b3 b4 s0 s1 s2 s3 s4 u0 u1 u′′

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

i+ 100 xT yT x0 y0 n n′ u′ x1 y1 x2 y2 x3 y3 x4 y4
i+ 101 x5 y5 b0 b1 b2 b3 b4 s0 s1 s2 s3 s4 u0 u1 u′′

i+ 102 x y t0 t1 t2 n′ xT yT m e1 e2 k u – –

Let a−1 = 0x224698fc0994a8dd8c46eb2100000000 be a circuit’s value for a scalar −1,
a0 = 0x200000000000000000000000000000003369e57a0e5efd4c526a60b180000001 for 0 and
a1 = 0x224698fc0994a8dd8c46eb2100000001 for 1. Evaluations:

• bi are bits of the k, first b0 is the most significant bit of k, n is an accumulator of bi.
• (x1, y1)− (x0, y0) = (x0, y0) + (xT , (2b1 − 1)yT)

• (x2, y2)− (x1, y1) = (x1, y1) + (xT , (2b1 − 1)yT)

• (x3, y3)− (x2, y2) = (x2, y2) + (xT , (2b1 − 1)yT)

• (x4, y4)− (x3, y3) = (x3, y3) + (xT , (2b1 − 1)yT)

• (x5, y5)− (x4, y4) = (x4, y4) + (xT , (2b1 − 1)yT)

• s0 = y0−(2b0−1)·yT

x0−xT

• s1 = y1−(2b1−1)·yT

x1−xT

• s2 = y2−(2b2−1)·yT

x2−xT

• s3 = y3−(2b3−1)·yT

x3−xT

• s4 = y4−(2b4−1)·yT

x4−xT

• m = (n′ − a−1) · (n′ − a0) · (n′ − a1)

• t0 = invm
• t1 = inv(n′−a−1)

• t2 = inv(n′−a1)

• (x, y) - is the circuit’s result.

Constraints:

• next(w2) · (next(w2)− 1) = 0

• next(w3) · (next(w3)− 1) = 0

• next(w4) · (next(w4)− 1) = 0

• next(w5) · (next(w5)− 1) = 0

• next(w6) · (next(w6)− 1) = 0

• (w2 − w0) · next(w7) = w3 − (2 · next(w2)− 1) · w1

• (w7 − w0) · next(w8) = w8 − (2 · next(w3)− 1) · w1

• (w9 − w0) · next(w9) = w10 − (2 · next(w4)− 1) · w1

• (w11 − w0) · next(w10) = w12 − (2 · next(w5)− 1) · w1

• (w13 − w0) · next(w11) = w14 − (2 · next(w6)− 1) · w1

• (2 ·w3 − next(w7) · (2 ·w2 − next(w7)
2 +w0))

2 = (2 ·w2 − next(w7)
2 +w0)

2 · (w7 −w0 +

next(w7)
2)

16

Dra
ft

• (2 ·w8 − next(w8) · (2 ·w7 − next(w8)
2 +w0))

2 = (2 ·w7 − next(w8)
2 +w0)

2 · (w9 −w0 +

next(w8)
2)

• (2 · w10 − next(w9) · (2 · w9 − next(w9)
2 + w0))

2 = (2 · w9 − next(w9)
2 + w0)

2 · (w11 −
w0 + next(w9)

2)

• (2 ·w12 − next(w10) · (2 ·w11 − next(w10)
2 +w0))

2 = (2 ·w11 − next(w10)
2 +w0)

2 · (w13 −
w0 + next(w10)

2)

• (2 · w14 − next(w11) · (2 · w13 − next(w11)
2 + w0))

2 = (2 · w13 − next(w11)
2 + w0)

2 ·
(next(w0)− w0 + next(w11)

2)

• (w8+w3)·(2·w2−next(w7)
2+w0) = (w2−w7)·(2·w3−next(w7)·(2·w2−next(w7)

2+w0))

• (w10+w8)·(2·w7−next(w8)
2+w0) = (w7−w9)·(2·w8−next(w8)·(2·w7−next(w8)

2+w0))

• (w12 + w10) · (2 · w9 − next(w9)
2 + w0) = (w9 − w11) · (2 · w10 − next(w9) · (2 · w9 −

next(w9)
2 + w0))

• (w14 + w12) · (2 · w11 − next(w10)
2 + w0) = (w11 − w13) · (2 · w12 − next(w10) · (2 · w11 −

next(w10)
2 + w0))

• (next(w1) +w14) · (2 ·w13 − next(w11)
2 +w0) = (w13 − next(w0)) · (2 ·w14 − next(w11) ·

(2 · w13 − next(w11)
2 + w0))

• w5 = 32 · (w4) + 16 · next(w2) + 8 · next(w3) + 4 · next(w4) + 2 · next(w5) + next(w6)

Constraints for the last 3 rows:

• w2 · (w2 − 1) = 0

• w3 · (w3 − 1) = 0

• w4 · (w4 − 1) = 0

• w5 · (w5 − 1) = 0

• w6 · (w6 − 1) = 0

• (prev(w2)− prev(w0)) · w7 = prev(w3)− (2 · w2 − 1) · prev(w1)

• (prev(w7)− prev(w0)) · w8 = prev(w8)− (2 · w3 − 1) · prev(w1)

• (prev(w9)− prev(w0)) · w9 = prev(w10)− (2 · w4 − 1) · prev(w1)

• (prev(w11)− prev(w0)) · w10 = prev(w12)− (2 · w5 − 1) · prev(w1)

• (prev(w13)− prev(w0)) · w11 = prev(w14)− (2 · w6 − 1) · prev(w1)

• (2·prev(w3)−w7 ·(2·prev(w2)−(w7)
2+prev(w0)))

2 = (2·prev(w2)−(w7)
2+prev(w0))

2 ·
(prev(w7)− prev(w0) + (w7)

2)

• (2·prev(w8)−w8 ·(2·prev(w7)−(w8)
2+prev(w0)))

2 = (2·prev(w7)−(w8)
2+prev(w0))

2 ·
(prev(w9)− prev(w0) + (w8)

2)

• (2·prev(w10)−w9 ·(2·prev(w9)−(w9)
2+prev(w0)))

2 = (2·prev(w9)−(w9)
2+prev(w0))

2 ·
(prev(w11)− prev(w0) + (w9)

2)

•
((

2 · prev(w12)−w10 · (2 · prev(w11)− (w10)
2 + prev(w0))

)2 − (
(2 · prev(w11)− (w10)

2 +

prev(w0))
2 · (prev(w13)− prev(w0) + (w10)

2)
))

· (next(w8) · next(w2)) = 0

•
((

2 · prev(w14)−w11 · (2 · prev(w13)− (w11)
2 + prev(w0))

)2 − (
2 · prev(w13)− (w11)

2 +

prev(w0))
2 · (w0 − prev(w0) + (w11)

2)
))

· (next(w8) · next(w2)) = 0

• (prev(w8) + prev(w3)) · (2 · prev(w2)− (w7)
2 + prev(w0)) = (prev(w2)− prev(w7)) · (2 ·

prev(w3)− w7 · (2 · prev(w2)− (w7)
2 + prev(w0)))

• (prev(w10) + prev(w8)) · (2 · prev(w7)− (w8)
2 + prev(w0)) = (prev(w7)− prev(w9)) · (2 ·

prev(w8)− w8 · (2 · prev(w7)− (w8)
2 + prev(w0)))

17

Dra
ft

• (prev(w12) + prev(w10)) · (2 · prev(w9)− (w9)
2 + prev(w0)) = (prev(w9)− prev(w11)) ·

(2 · prev(w10)− w9 · (2 · prev(w9)− (w9)
2 + prev(w0)))

•
((

prev(w14)+prev(w12))·(2·prev(w11)−(w10)
2+prev(w0))

)
−
(
(prev(w11)−prev(w13))·

(2 · prev(w12)− w10 · (2 · prev(w11)− (w10)
2 + prev(w0))

))
· (next(w8) · next(w2)) = 0

•
((

(w1 + prev(w14)) · (2 · prev(w13) − (w11)
2 + prev(w0))

)
−

(
(prev(w13) − w0) · (2 ·

prev(w14)− w11 · (2 · prev(w13)− (w11)
2 + prev(w0)))

))
· (next(w8) · next(w2)) = 0

• prev(w5) = 32 · prev(w4) + 16 · w2 + 8 · w3 + 4 · w4 + 2 · w5 + w6

• (next(w8) · next(w2)− 1) · next(w8)

• ((next(w5)− a−1) · next(w3)− 1) · (next(w5)− a−1) = 0

• ((next(w5)− a1) · next(w4)− 1) · (next(w5)− a1)

• (next(W8) · next(w2) ·w0) + ((next(w5)− a−1) · next(w3)− (next(w5)− a1) · next(w4)) ·
((next(w5)− a−1) · next(w3)− (next(w5)− a1) · next(w4)) · next(w6)− next(w0) = 0

• (next(w8) · next(w2) ·w1) + ((next(w5)− a−1) · next(w3)− (next(w5)− a1) · next(w4)) ·
next(w7)− next(w1) = 0

• next(w8)− ((next(w5)− a−1) · (next(w5)− a0) · (next(w5)− a1))

Additional range checks.

• Evaluations:

– ui are triplets of bits of the u, first u0 is the most significant triplet, u′′ is an
accumulator of ui (and u′ is its previous value)

– e1 = k0
– e2 =

∑130
j=254 k254−j · 2j−130

• textbfConstraints: for rows i+ 58, i+ 60, . . . , i+ 98:

– next(w12) · (next(w12) − 1) · (next(w12) − 2) · (next(w12) − 3) · (next(w12) − 4) ·
(next(w12)− 5) · (next(w12)− 6) · (next(w12)− 7) = 0

– next(w13) · (next(w13) − 1) · (next(w13) − 2) · (next(w13) − 3) · (next(w13) − 4) ·
(next(w13)− 5) · (next(w13)− 6) · (next(w13)− 7) = 0

– next(w14) = 26 · w6 + 23 · next(w12) + next(w13)

for row i+ 101:

– w12 · (w12 − 1) · (w12 − 2) · (w12 − 3) · (w12 − 4) · (w12 − 5) · (w12 − 6) · (w12 − 7) = 0

– w13 · (w13 − 1) = 0

– w14 = 24 · prev(w6) + 2 · w12 + w13

– next(w9) · (w14 − next(w12)) = 0

– next(w9) · (next(w10)− 2124) = 0

– next(w12)− next(w11) + next(w9) · 2254 + tp − 2130 = 0

Copy Constraints:

• (xT , yT) in row j are copy constrained with (xT , yT) in row j + 2 (for j ∈ {i, i + 2, i +

4, . . . , i+ 98}) and with last row.
• (x0, y0) in row i are copy constrained with values from the first doubling circuit
• (x0, y0) in row j, j ̸= i are copy constrained with (x5, y5) in row j − 1

• n = 0 in row i is copy-constrained with the zero value
• n in the row j, j ̸= i is copy contrained with n′ in the row j − 2

18

Dra
ft

• n′ in the row i+ 102 is copy constrained with n′ in the row i+ 100

• k is copy constrained with n′ in the row i+ 100

• u′ = 0 in row i+ 58 is copy-constrained with the zero value
• u′ in the row j, i < j ≤ i+ 100 is copy contrained with u′′ in the row j − 1

• b0 in row i+ 1 is copy-constrained with w9 in row i+ 102

• k is copy constrained with w11 in the row i+ 102

• w5 in row i+ 48 is copy-constrained with w10 in row i+ 102.

A.3 FADD

Adds two Blueprint field elements A and B into the result one C.
FADD v0 . v1 . v2

Input: v0 - field element A , v1 - field element B.
Output: v2 - field element C.
v0: field element A
v1: field element B
v2: field element C

A.4 FSUB

Subtracts one Blueprint field element B from another one A and puts the result into
Blueprint field element C.
FSUB v0 . v1 . v2

Input: v0 - field element A , v1 - field element B.
Output: v2 - field element C.
v0: field element A
v1: field element B
v2: field element C

A.5 FMUL

Multiplies two Blueprint field elements A and B into the result one C.
FMUL v0 . v1 . v2

Input: v0 - field element A , v1 - field element B.
Output: v2 - field element C.
v0: field element A
v1: field element B
v2: field element C

A.6 FDIV

Divides one Blueprint field element A to another one B and puts the result into Blueprint
field element C.
FDIV v0 . v1 . v2

Input: v0 - field element A , v1 - field element B.
Output: v2 - field element C.
v0: field element A

19

Dra
ft

v1: field element B
v2: field element C

A.7 HSHA256

HSHA256 instruction gets two blocks of SHA2-256 hash as input and outputs result of
hashing into new block. Blocks are represented in form of variables. Amount of variables
required to represent one block depends on used Blueprint field bitsize.

TODO: clarify operated field description.

For case of Pasta curve base field as Blueprint field each of input and ouput blocks can be
fits into 2 variables.

HSHA256 v0 v1 . v2 v3 . v4 v5

Input: [v0, v1, v2, v3] - two block to hash
Output: [v4, v5] - block with hashing result

TODO: clarify arguments description.

v0: Bits from ??? to ??? in ??? endianness of first input block.
v1: Bits from ??? to ??? in ??? endianness of first input block.
v2: Bits from ??? to ??? in ??? endianness of second input block.
v3: Bits from ??? to ??? in ??? endianness of second input block.
v4: Bits from ??? to ??? in ??? endianness of result block.
v5: Bits from ??? to ??? in ??? endianness of result block.

A.7.1 Circuit

HSHA256 is handled by the flexible 9-wire circuit defined as follows.

Suppose that input data is in the 32-bits form, which is already padded to the required size.
We suppose that the checking that chunked input data corresponds to the original data out of
the circuit. However, we do not need to range constrain these chunks as we get them for free
from the SHA2-256 circuit.

Thus, the preprocessing constraints for the SHA2-256 circuit is a decomposition of k message
blocks to 32 bits chunks without range proofs.

Lookup tables We use the following lookup tables:

1. SHA2-256 NORMALIZE4 with 2 columns and 214 rows. The first column contains all
possible 14-bits words. The second column contains corresponding sparse representations
with base 4. The constraints can be used for the range check and sparse representation
simultaneously.

2. SHA2-256 NORMALIZE7 with 2 columns and 214 rows. The first column contains all
possible 14-bits words. The second column contains corresponding sparse representations
with base 7. The constraints can be used for the range check and sparse representation
simultaneously.

20

Dra
ft

3. SHA2-256 NORMALIZE MAJ with 2 columns and 28 rows. The first column contains
all possible 8-bits words. The second column contains corresponding sparse representations
with base 4.

4. SHA2-256 NORMALIZE CH with 2 columns and 28 rows. The first column contains
all possible 8-bits words. The second column contains corresponding sparse representations
with base 7.

Message scheduling For each block of 512 bits of the padded message the 64 words are
constructed in the following way:

• The first 16 words are obtained by splitting the message.
• The last 48 words are obtained by using the functions σ0, σ1:

Wi = σ1(Wi−2)⊕Wi−7 ⊕ σ0(Wi−15)⊕Wi−16 (3)

Each round of the message scheduling has the following table:

w0 w1 w2 w3 w4 w5 w6 w7 w8

j + 0 a a0 a1 a2 a3 â1 â2 a′0
j + 1 Wi Wj a′1 a′2 a′3 s′0 s′1 s′2 s′3
j + 2 w s0 s1 s2 s3 s0 s1 s2 s3
j + 3 b′0 b′1 b′2 b′3 s′0 s′1 s′2 s′3
j + 4 b b0 b1 b2 b3 b̂0 b̂1 b̂3

Evaluations:

Let b be Wi−2 and a be Wi−15 from 3. The values Wi and Wj in the table corresponds to Wi−7

and Wi−16 respectively from 3. From the round r = 2 the copy constraints are used for values b

and w from round r − 2. The copy constraints for Wi−7,Wi−15 and Wi−16 are used in a similar
way. The output of round Wi from 3 is w.

The first 16 words require a range check. We get it fo free from range-constraining chunks
inside functions σ0 and σ1. Thus, for i from 16 to 63:

1. Apply σ0 to Wi−15.

2. Add the following constraint for Wi:

w0,j+2 = w0,j+1 + w1,j+1 + w1,j+2 + w2,j+2 · 23 + w3,j+2 · 27 + w4,j+2 · 218 + w5,j+2 +

w6,j+2 · 210 + w7,j+2 · 217 + w8,j+2 · 219,

3. Apply σ1 to Wi−2.

Thus, the message schedule takes 5 · 48 = 240 rows.

The function σ0 contains sparse mapping with base 4. Let a be divided to chunks a0, a1, a2, a3
which equals to 3, 4, 11, 14 bits respectively. The values a′0, a

′
1, a

′
2, a

′
3 are in sparse form, and

a′ is a sparse a. SHA2-256 NORMALIZE4 lookup table is used for mapping to sparse
representation and range-constraining for each chunk ai, where bit-length of ai > 3. If a chunk
is 14 bits long, then it is constrained for free. Else the prover has to calculate the sparse
representation âi for 2j · ai, where j + len(ai) = 14 and len(ai) is bit-length of ai. The

21

Dra
ft

tuple {s′0, s′1, s′2, s′3} is a sparse representation of the result of σ0 and the tuple {s0, s1, s2, s3}
is a normal representation. The size of elements of these tuples equals to {14, 14, 2, 2} bits
respectively.

Constraints:

w0,j+0 = w1,j+0 + w2,j+0 · 23 + w3,j+0 · 27 + w4,j+0 · 218
(w1,j+0 − 7) · (w1,j+0 − 6) · ... · w1,j+0 = 0

w5,j+1 +w6,j+1 · 414 +w7,j+1 · 428 +w8,j+1 · 230 = w2,j+1 +w3,j+1 · 44 +w4,j+1 · 415 +w3,j+1 +

w4,j+1 · 411 + w7,j+0 · 425 + w2,j+1 · 428 + w4,j+1 + w7,j+0 · 414 + w2,j+1 · 417 + w3,j+1 · 421
(w7,j+1 − 3) · (w7,j+1 − 2) · (w7,j+1 − 1) · w7,j+1 = 0

(w8,j+1 − 3) · (w8,j+1 − 2) · (w8,j+1 − 1) · w8,j+1 = 0

10 plookup constraints:

(w1,j+0, w7,j+0), (2
10 · w2,j+0, w5,j+0), (w2,j+0, w2,j+1), (2

3 ·
w3,j+0, w6,j+0), (w3,j+0, w3,j+1), (w4,j+0, w4,j+1), (w1,j+2, w5,j+1), (w2,j+2, w6,j+1), (w3,j+2, w7,j+2), (w4,j+2, w8,j+2)

The function σ1 contains sparse mapping subcircuit with base 4. Let a be divided to
chunks a0, a1, a2, a3 which equals to 10, 7, 2, 13 bits respectively. The values a′0, a

′
1, a

′
2, a

′
3 are

in sparse form and a′ is a sparse a. SHA2-256 NORMALIZE4 lookup table is used for
mapping to sparse representation and range-constraining in the same way as for σ0. The
tuple {s′0, s′1, s′2, s′3} is a sparse representation of the result of σ1 and the tuple {s0, s1, s2, s3}
is a normal representation. The size of elements of these tuples equals to {14, 14, 2, 2} bits
respectively.

Constraints:

w0,j+3 = w1,j+3+w2,j+3 · 210+w3,j+3 · 217+w4,j+3 · 219(w3,j+3− 3) · (w3,j+3− 2) · (w3,j+3− 1) ·
w3,j+3 = 0w5,j+3+w6,j+3·414+w7,j+3·428+w8,j+3·230 = w2,j+3+w3,j+3·47+w4,j+3·49+w3,j+3+

w4,j+3 · 42+w1,j+3 · 415+w2,j+3 · 425+w4,j+3+w1,j+3 · 413+w2,j+3 · 423+w3,j+3 · 430(w7,j+3−
3) · (w7,j+3 − 2) · (w7,j+3 − 1) · w7,j+3 = 0(w8,j+3 − 3) · (w8,j+3 − 2) · (w8,j+3 − 1) · w8,j+3 = 0

11 plookup constraints:

(24 · (w1,j+3, w5,j+3), (2
7 · w2,j+3, w6,j+3), (2 ·

w4,j+3, w7,j+3), (w1,j+3, w1,j+2), (w2,j+3, w2,j+2), (w3,j+3, w3,j+2), (w4,j+3, w4,j+2), (w5,j+2, w5,j+3), (w6,j+2, w6,j+3), (w7,j+2, w7,j+3), (w7,j+2, w8,j+3)

Compression There are 64 rounds of compression. Each round of compression has the
following table:

w0 w1 w2 w3 w4 w5 w6 w7 w8

j + 0 e e′0 e0 e1 e2 e3 ê1 ê2 ê3
j + 1 e′ f ′ e′1 e′2 e′3 s′0 s′1 s′2 s′3
j + 2 ch0,sparse ch1,sparse ch2,sparse ch3,sparse − s0 s1 s2 s3
j + 3 g′ d h Wr enew ch0 ch1 ch2 ch3

j + 4 maj0,sparse maj1,sparse maj2,sparse maj3,sparse anew maj3 maj0 maj1 maj2
j + 5 a′ b′ c′ s0 s1 s2 s3
j + 6 s′1 s′2 a′0 a′1 a′2 a′3 s′3 s′4
j + 7 a a0 a1 a2 a3 â0 â1 â3

22

Dra
ft

The working variables a, b, c, d, e, f, g, h equals to the fixed initial SHA − 256 values for
the first chunk and to the sum of previous output and initial values for the rest of chunks. The
values for chunk c, c¬1 are copy-constrained with output from previous round. The variables
with quotes are corresponded sparse representation. For each chunk, the following rows are
used:

w0 w1 w2 w3 w4 w5 w6 w7 w8

j + 0 a a′ b b′ d − − − −
j + 1 c c′ e e′ h − − − −
j + 2 f f ′ g g′ − − − − −

For the first round, a, a′, b′, c′, d, e, e′, f ′, g′, h are copy constrained with corresponded values
from the table above.

For the second round, b′, c′, d, f ′, g′, h are copy constrained with a′, b′, c, e′, f ′, g from the
table. The values a, e are copy constrained with anew, enew from the previous round.

For the third round, c′, d, g′, h are copy constrained with a′, b, e′, f . The values a, e are copy
constrained with anew, enew from the previous round. The values b′, f ′ are copy constrained
with a′, e′ from the previous round.

In the rest of the rounds the following ‘non-special‘ copy constraints are used:

1. The values a, e are copy constrained with anew, enew from the previous round.

2. The values b′, f ′ are copy constrained with a′, e′ from the previous round.

3. The values c′, g′ are copy constrained with b′, c′ from the previous round.

4. The values d, h are copy constrained with a′, e′ from the round r − 3, where r is current
round.

The Σ0 function contains subcircuit with base 4. Let a be divided to chunks a0, a1, a2, a3
which equals to 2, 11, 9, 10 bits respectively. The values a′0, a

′
1, a

′
2, a

′
3 are in sparse form and a′

is a sparse a. The tuple {s′0, s′1, s′2, s′3} is a sparse representation of the result of Σ0 and the
tuple {s0, s1, s2, s3} is a normal representation. The size of elements of these tuples equals to
{14, 14, 2, 2} bits respectively. SHA2-256 NORMALIZE4 lookup table is used for mapping
to sparse representation and range-constraining in the same way as for σ0.

Constraints:

w0,j+7 = w2,j+7 + w3,j+7 · 22 + w4,j+7 · 213 + w5,j+7 · 222w0,j+5 =

w2,j+6 +w3,j+6 · 42 +w4,j+6 · 413 +w5,j+6 · 422(w2,j+6 − 3) · (w2,j+6 − 2) · (w2,j+6 − 1) ·w2,j+6 =

0w0,j+6+w1,j+6 ·414+w6,j+6 ·428+w7,j+6 ·230 = w3,j+6+w4,j+6 ·411+w5,j+6 ·420+w1,j+6 ·230+
w4,j+6+w5,j+6·49+w2,j+6·419+w3,j+6·421+w5,j+6+w2,j+6·410+w3,j+6·412+w4,j+6·423(w6,j+6−
3) · (w6,j+6 − 2) · (w6,j+6 − 1) · w6,j+6 = 0(w7,j+6 − 3) · (w7,j+6 − 2) · (w7,j+6 − 1) · w7,j+6 = 0

11 plookup constraints:

(23 · (w3,j+6, w6,j+6), (2
5 · w4,j+6, w7,j+6), (2

4 ·
w5,j+6, w8,j+6), (w2,j+6, w2,j+5), (w3,j+6, w3,j+5), (w4,j+6, w4,j+5), (w5,j+6, w5,j+5), (w5,j+5, w0,j+6), (w6,j+5, w1,j+6), (w7,j+5, w6,j+6), (w8,j+5, w7,j+6)

The Σ1 function contains subcircuit with base 7. Let a be divided to chunks a0, a1, a2, a3
which equals to 6, 5, 14, 7 bits respectively. The values a′0, a

′
1, a

′
2, a

′
3 are in sparse form, and a′

is a sparse a. The tuple {s′0, s′1, s′2, s′3} is a sparse representation of the result of Σ1 and the

23

Dra
ft

tuple {s0, s1, s2, s3} is a normal representation. The size of elements of these tuples equals to
{14, 14, 2, 2} bits respectively. SHA2-256 NORMALIZE7 lookup table is used for mapping
to sparse representation and range-constraining in the same way as for σ0.

Constraints:

w0,j+0 = w2,j+0 + w3,j+0 · 26 + w4,j+0 · 211 + w5,j+0 · 225w0,j+1 =

w1,j+0 +w2,j+1 · 76 +w3,j+1 · 711 +w4,j+1 · 725w5,j+1 +w6,j+1 · 414 +w7,j+1 · 428 +w8,j+1 · 230 =

w2,j+1+w3,j+1 ·45+w4,j+1 ·419+w1,j+0 ·226+w3,j+1+w4,j+1 ·414+w1,j+0 ·421+w2,j+1 ·427+
w4,j+1 +w1,j+0 · 47 +w2,j+1 · 413 +w3,j+1 · 427(w3,j+1 − 3) · (w3,j+1 − 2) · (w3,j+1 − 1) ·w3,j+1 =

0(w4,j+1 − 3) · (w4,j+1 − 2) · (w4,j+1 − 1) · w4,j+1 = 0

11 plookup constraints:

(28 · (w2,j+0, w1,j+0), (2
9 · w3,j+0, w2,j+1), (2

7 ·
w5,j+0, w4,j+1), (w2,j+0, w1,j+0), (w3,j+0, w2,j+1), (w4,j+0, w3,j+1), (w5,j+0, w4,j+1), (w5,j+2, w5,j+1), (w6,j+2, w6,j+1), (w7,j+2, w6,j+1), (w8,j+2, w7,j+1)

The Maj function contains subcircuit with base 4 for a, b, c. SHA2-256 NORMALIZE
MAJ lookup table is used for mapping to sparse representation in the same way as for σ0.

The value of the maj function is stored in chunks of 8 bits {maj0,maj1,maj2,maj3} and
the corresponded sparse value is {maj0,sparse,maj1,sparse,maj2,sparse,maj3,sparse}

Constraints:

w0,j+4 + w1,j+4 · 48 + w2,j+4 · 48·2 + w3,j+4 · 48·3 = w0,j+5 + w1,j+5 + w4,j+5

4 plookup constraints:

(w5,j+4, w0,j+4), (w6,j+4, w1,j+4), (w7,j+4, w2,j+4), (w8,j+4, w3,j+4)

The Ch function contains sparse mapping subcircuit with base 7 for e, f, g. SHA2-256
NORMALIZE CH lookup table is used for mapping to sparse representation in the same way
as for σ0. The value of the ch function is stored in chunks of 8 bits {ch0, ch1, ch2, ch3} and the
corresponded sparse value is {ch0,sparse, ch1,sparse, ch2,sparse, ch3,sparse}

Constraints:

w0,j+2 + w1,j+2 · 78 + w2,j+2 · 78·2 + w3,j+2 · 78·3 = w0,j+1 + 2 · w1,j+1 + 3 · w0,j+3

4 plookup constraints:

(w5,j+3, w0,j+2), (w6,j+3, w1,j+2), (w7,j+3, w2,j+2), (w8,j+3, w3,j+2)

Update the values a and e The value Wr is a word, where r is a number of round. It has
to be copy-constrained with the word Wr in the message scheduling.

Constraints:

w4,j+3 = w1,j+3 +w2,j+3 +w5,j+2 +w6,j+2 · 214 +w7,j+2 · 228 +w8,j+2 · 230 +w5,j+3 +w6,j+3 ·
28 + w7,j+3 · 28·2 + w8,j+3 · 28·3 + k[r] + w3,j+3, where r is a number of round.

w4,j+4 = w4,j+3 −w1,j+3 +w5,j+5 +w6,j+5 · 214 +w7,j+5 · 228 +w8,j+5 · 230 +w5,j+4 +w6,j+4 ·
28 + w7,j+4 · 28·2 + w8,j+4 · 28·3

24

Dra
ft

Output of the round

w0 w1 w2 w3 w4 w5 w6 w7 w8

j + 0 a b c d e f − − −
j + 1 h0 h1 h2 h3 h4 h5 − − −
j + 2 a b c d e f − − −
j + 3 h6 h7 g h g h − − −

Evaluations:

The values ξ copy constrained with initial working variables of this round. The values
a, b, c, d, e, f, g, h copy constrained with variables from the compression. The output of the

round is h0, h1, .., h7

Constraints:

w0,j+1 = w0,j+0 + w0,j+2

w1,j+1 = w1,j+0 + w1,j+2

w2,j+1 = w2,j+0 + w2,j+2

w3,j+1 = w3,j+0 + w3,j+2

w4,j+1 = w4,j+0 + w4,j+2

w5,j+1 = w5,j+0 + w5,j+2

w0,j+3 = w2,j+3 + w4,j+3

w1,j+3 = w3,j+3 + w5,j+3

Cost The total value of rows is 48 · 5 + 8 · 64 + 3 = 755 per chunk.

25

	Introduction
	Short introduction to Placeholder
	Arithmetizations
	Plonk Arithmetization

	SDKs and Frontend
	Frontend
	SDKs

	Intermediate representation
	Custom types support
	Galois field element types
	Multiprecision modular number types
	Curve group element types
	Multiprecision integer types

	Blueprint Assigner
	Assigner target parameters
	Blueprint field
	Component trait
	PLONK component

	Instructions sets
	Branch instructions
	Blueprint instruction with virtual IR types arguments
	Blueprint instruction with virtual legalized types arguments
	Parameterized blueprint instruction with allocated variables arguments;
	Circuit component gates together with part of assignment table.

	PLONK lowering passes
	Instruction selection
	Types legalization
	Native Galois field element legalization
	Non-native Galois field element legalization
	Native curve group element in 2-coordinates form legalization
	Native curve group element in 3-coordinates form legalization
	Non-native curve group element in 2-coordinates form legalization
	Non-native curve group element in 3-coordinates form legalization
	Multiprecision integral number legalization

	Instructions de-duplication
	Components selectors preprocessing
	Assignment table emission
	Selectors post-processing

	Aggregated mode
	Assignment table partitioning for aggregated mode

	Lowering extra optimizations
	Components adjustment and collocation
	Loops circification
	Branching circification

	PLONK instructions set
	Curve addition
	Curve multiplication
	FADD
	FSUB
	FMUL
	FDIV
	HSHA256
	Circuit

	Bibliography

